scholarly journals Poly(3,4-ethylenedioxythiophene) Based Solid-State Polymer Supercapacitor with Ionic Liquid Gel Polymer Electrolyte

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 297 ◽  
Author(s):  
Haiyan Du ◽  
Zemin Wu ◽  
Yuyu Xu ◽  
Shaoze Liu ◽  
Huimin Yang

In this work, solid-state polymer supercapacitor (SSC) was assembled using poly(3,4-ethylenedioxythiophene/carbon paper (PEDOT/CP) as an electrode and ionic liquid (1-butyl-3-methylimidazole tetrafluoroborate)/polyvinyl alcohol/sulfuric acid (IL/PVA/H2SO4) as a gel polymer electrolyte (GPE). The GPE was treated through freezing–thawing (F/T) cycles to improve the electrochemical properties of PEDOT SSC. Cyclic voltammetry (CV), galvanostatic charge–discharge measurements (GCD) and electrochemical impedance spectroscopy (EIS) techniques and conductivity were carried out to study the electrochemical performance. The results showed that the SSC based on ionic liquid GPE (SSC-IL/PVA/H2SO4) has a higher specific capacitance (with the value of 86.81 F/g at 1 mA/cm2) than the SSC-PVA/H2SO4.The number of F/T cycles has a great effect on the electrochemical performance of the device. The energy density of the SSC treated with 3 F/T cycles was significantly improved, reaching 176.90 Wh/kg. Compared with the traditional electrolytes, IL GPE has the advantages of high ionic conductivity, less volatility, non-flammability and wider potential window. Moreover, the IL GPE has excellent elastic recovery and self-healing performance, leading to its great potential applications in flexible or smart energy storage equipment.

2016 ◽  
Vol 328 ◽  
pp. 510-519 ◽  
Author(s):  
Gaind P. Pandey ◽  
Tao Liu ◽  
Cody Hancock ◽  
Yonghui Li ◽  
Xiuzhi Susan Sun ◽  
...  

2012 ◽  
Vol 1448 ◽  
Author(s):  
G. P. Pandey ◽  
A. C. Rastogi

ABSTRACTPoly(3,4-ethylenedioxythiophene) (PEDOT) electrodes are prepared by a novel ultrashort galvanic pulse electropolymerization technique for application in solid-state supercapacitors. Microstructure studies using scanning electron microscopy (SEM) show that PEDOT electrodes deposited by pulse polymerization are highly porous as compared to the conventional potentiostatic polymerization. In addition, as revealed by the X-ray photoelectron spectroscopy (XPS) studies in the PEDOT films formed by pulse polymerization, the polymer chains are fully conjugated with the dopant ClO4- ions. Solid-state supercapacitor cells using pulse polymerized PEDOT electrodes and ionic liquid gel polymer electrolyte were fabricated and characterized. The impedance spectroscopy studies show that the pulse polymerized PEDOT electrode have specific capacitance value of ∼ 65 F g-1 as compared to ∼52 F g-1for potentiostatically polymerized PEDOT and significantly lower interfacial and charge transfer resistance. Cyclic voltammetry (CV) and galvanostatic charge-discharge characterization show highly capacitive behavior of the supercapacitor cells in the solid-state configuration.


2021 ◽  
Author(s):  
KAPURALAGE WATHSALA PRASADINI ◽  
Kumudu Sandhya Perera ◽  
Kamal Pushpakumara Vidanapathirana

Abstract Redox capacitor, which is one type of supercapacitor, has been attracted tremendously as they show a satisfactory specific capacitance, good cycle ability, and good stability. The present study reveals a redox capacitor fabricated with an ionic liquid (IL) based gel polymer electrolyte (GPE). Electrodes of the redox capacitor were fabricated with the conducting polymer, polypyrrole (PPy). The composition of the GPE was polyvinylidenefluoride-co-hexafluoropropylene (PVdF-co-HFP) : 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF) : ZnTF. Characterization of redox capacitor was done by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) tests. The relaxation time constant (τ0) of the redox capacitor is about 31.57 s implying somewhat fast redox reactions. Initial single electrode specific capacitance (CSC) was 150.16 Fg-1 and at the 500th cycle, it was 40.03 Fg-1. The decrease of the CSC may be due to the formation of the passivation layer at the GPE / electrode interface resulting in degradation upon cycling. The GCD test resulted 48.40 Fg-1 of initial single electrode specific discharge capacitance (Csd) value. Upon 1000 cycles, it was reached 22.25 Fg-1. The decrease of Csd may be due to the degradation of the electrode and the IL-based GPE upon prolonged cycling.


Sign in / Sign up

Export Citation Format

Share Document