scholarly journals A Numerical Investigation on Droplet Bag Breakup Behavior of Polymer Solution

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2172
Author(s):  
Guidong Chu ◽  
Lijuan Qian ◽  
Xiaokai Zhong ◽  
Chenlin Zhu ◽  
Zhongli Chen

The deformation and breakup of a polymer solution droplet plays a key role in inkjet printing technology, tablet-coating process, and other spray processes. In this study, the bag breakup behavior of the polymer droplet is investigated numerically. The simple coupled level set and volume of fluid (S-CLSVOF) method and the adaptive mesh refinement (AMR) technique are employed in the droplet breakup cases at different Weber numbers and Ohnesorge numbers. The nature of the polymer solution is handled using Herschel–Bulkley constitutive equations to describe the shear-thinning behavior. Breakup processes, external flow fields, deformation characteristics, energy evolutions, and drag coefficients are analyzed in detail. For the bag breakup of polymer droplets, the liquid bag will form an obvious reticular structure, which is very different from the breakup of a Newtonian fluid. It is found that when the aerodynamic force is dominant, the increase of the droplet viscous force will prolong the breakup time, but has little effect on the final kinetic energy of the droplet. Moreover, considering the large deformation of the droplet in the gas flow, a new formula with the cross-diameter (Dcro) is introduced to modify the droplet drag coefficient.

2018 ◽  
Vol 50 (04) ◽  
pp. 561-570
Author(s):  
I. A. QAZI ◽  
A. F. ABBASI ◽  
M. S. JAMALI ◽  
INTIZAR INTIZAR ◽  
A. TUNIO ◽  
...  

2019 ◽  
Vol 490 (1) ◽  
pp. L52-L56
Author(s):  
Bastian Sander ◽  
Gerhard Hensler

ABSTRACT This paper aims at studying the reliability of a few frequently raised, but not proven, arguments for the modelling of cold gas clouds embedded in or moving through a hot plasma and at sensitizing modellers to a more careful consideration of unavoidable acting physical processes and their relevance. At first, by numerical simulations we demonstrate the growing effect of self-gravity on interstellar clouds and, by this, moreover argue against their initial set-up as homogeneous. We apply the adaptive-mesh refinement code flash with extensions to metal-dependent radiative cooling and external heating of the gas, self-gravity, mass diffusion, and semi-analytic dissociation of molecules, and ionization of atoms. We show that the criterion of Jeans mass or Bonnor–Ebert mass, respectively, provides only a sufficient but not a necessary condition for self-gravity to be effective, because even low-mass clouds are affected on reasonable dynamical time-scales. The second part of this paper is dedicated to analytically study the reduction of heat conduction by a magnetic dipole field. We demonstrate that in this configuration, the effective heat flow, i.e. integrated over the cloud surface, is suppressed by only 32 per cent by magnetic fields in energy equipartition and still insignificantly for even higher field strengths.


Author(s):  
Alexander Haberl ◽  
Dirk Praetorius ◽  
Stefan Schimanko ◽  
Martin Vohralík

AbstractWe consider a second-order elliptic boundary value problem with strongly monotone and Lipschitz-continuous nonlinearity. We design and study its adaptive numerical approximation interconnecting a finite element discretization, the Banach–Picard linearization, and a contractive linear algebraic solver. In particular, we identify stopping criteria for the algebraic solver that on the one hand do not request an overly tight tolerance but on the other hand are sufficient for the inexact (perturbed) Banach–Picard linearization to remain contractive. Similarly, we identify suitable stopping criteria for the Banach–Picard iteration that leave an amount of linearization error that is not harmful for the residual a posteriori error estimate to steer reliably the adaptive mesh-refinement. For the resulting algorithm, we prove a contraction of the (doubly) inexact iterates after some amount of steps of mesh-refinement/linearization/algebraic solver, leading to its linear convergence. Moreover, for usual mesh-refinement rules, we also prove that the overall error decays at the optimal rate with respect to the number of elements (degrees of freedom) added with respect to the initial mesh. Finally, we prove that our fully adaptive algorithm drives the overall error down with the same optimal rate also with respect to the overall algorithmic cost expressed as the cumulated sum of the number of mesh elements over all mesh-refinement, linearization, and algebraic solver steps. Numerical experiments support these theoretical findings and illustrate the optimal overall algorithmic cost of the fully adaptive algorithm on several test cases.


Author(s):  
Weiqun Zhang ◽  
Andrew Myers ◽  
Kevin Gott ◽  
Ann Almgren ◽  
John Bell

Block-structured adaptive mesh refinement (AMR) provides the basis for the temporal and spatial discretization strategy for a number of Exascale Computing Project applications in the areas of accelerator design, additive manufacturing, astrophysics, combustion, cosmology, multiphase flow, and wind plant modeling. AMReX is a software framework that provides a unified infrastructure with the functionality needed for these and other AMR applications to be able to effectively and efficiently utilize machines from laptops to exascale architectures. AMR reduces the computational cost and memory footprint compared to a uniform mesh while preserving accurate descriptions of different physical processes in complex multiphysics algorithms. AMReX supports algorithms that solve systems of partial differential equations in simple or complex geometries and those that use particles and/or particle–mesh operations to represent component physical processes. In this article, we will discuss the core elements of the AMReX framework such as data containers and iterators as well as several specialized operations to meet the needs of the application projects. In addition, we will highlight the strategy that the AMReX team is pursuing to achieve highly performant code across a range of accelerator-based architectures for a variety of different applications.


2020 ◽  
Vol 501 (2) ◽  
pp. 1755-1765
Author(s):  
Andrew Pontzen ◽  
Martin P Rey ◽  
Corentin Cadiou ◽  
Oscar Agertz ◽  
Romain Teyssier ◽  
...  

ABSTRACT We introduce a new method to mitigate numerical diffusion in adaptive mesh refinement (AMR) simulations of cosmological galaxy formation, and study its impact on a simulated dwarf galaxy as part of the ‘EDGE’ project. The target galaxy has a maximum circular velocity of $21\, \mathrm{km}\, \mathrm{s}^{-1}$ but evolves in a region that is moving at up to $90\, \mathrm{km}\, \mathrm{s}^{-1}$ relative to the hydrodynamic grid. In the absence of any mitigation, diffusion softens the filaments feeding our galaxy. As a result, gas is unphysically held in the circumgalactic medium around the galaxy for $320\, \mathrm{Myr}$, delaying the onset of star formation until cooling and collapse eventually triggers an initial starburst at z = 9. Using genetic modification, we produce ‘velocity-zeroed’ initial conditions in which the grid-relative streaming is strongly suppressed; by design, the change does not significantly modify the large-scale structure or dark matter accretion history. The resulting simulation recovers a more physical, gradual onset of star formation starting at z = 17. While the final stellar masses are nearly consistent ($4.8 \times 10^6\, \mathrm{M}_{\odot }$ and $4.4\times 10^6\, \mathrm{M}_{\odot }$ for unmodified and velocity-zeroed, respectively), the dynamical and morphological structure of the z = 0 dwarf galaxies are markedly different due to the contrasting histories. Our approach to diffusion suppression is suitable for any AMR zoom cosmological galaxy formation simulations, and is especially recommended for those of small galaxies at high redshift.


Sign in / Sign up

Export Citation Format

Share Document