scholarly journals Comparison of a Novel Polymeric Hollow Fiber Heat Exchanger and a Commercially Available Metal Automotive Radiator

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1175
Author(s):  
Tereza Kroulíková ◽  
Tereza Kůdelová ◽  
Erik Bartuli ◽  
Jan Vančura ◽  
Ilya Astrouski

A novel heat exchanger for automotive applications developed by the Heat Transfer and Fluid Flow Laboratory at the Brno University of Technology, Czech Republic, is compared with a conventional commercially available metal radiator. The heat transfer surface of this heat exchanger is composed of polymeric hollow fibers made from polyamide 612 by DuPont (Zytel LC6159). The cross-section of the polymeric radiator is identical to the aluminum radiator (louvered fins on flat tubes) in a Skoda Octavia and measures 720 × 480 mm. The goal of the study is to compare the functionality and performance parameters of both radiators based on the results of tests in a calibrated air wind tunnel. During testing, both heat exchangers were tested in conventional conditions used for car radiators with different air flow and coolant (50% ethylene glycol) rates. The polymeric hollow fiber heat exchanger demonstrated about 20% higher thermal performance for the same air flow. The efficiency of the polymeric radiator was in the range 80–93% and the efficiency of the aluminum radiator was in the range 64–84%. The polymeric radiator is 30% lighter than its conventional metal competitor. Both tested radiators had very similar pressure loss on the liquid side, but the polymeric radiator featured higher air pressure loss.

AIChE Journal ◽  
2017 ◽  
Vol 64 (5) ◽  
pp. 1783-1792 ◽  
Author(s):  
Jun Liu ◽  
Hong Guo ◽  
Xingxing Zhi ◽  
Lei Han ◽  
Kai Xu ◽  
...  

Author(s):  
Abdulkerim Okbaz ◽  
Ali Pınarbaşı ◽  
Ali Bahadır Olcay

In the present study, 3-D numerical simulations on heat and fluid flow characteristics of double-row multi-louvered fins heat exchanger are carried out. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles in the range of 20° ≤θ≤ 30°, louver pitches of Lp = 2,7mm, 3,5mm and 3,8mm and frontal velocities of Uin between 1.22 m/s and 3 m/s. The results are reported in terms of Colburn j-factor, Fanning friction factor f and area goodness factor j/f based on louver angle, louver pitch and Reynolds number. To understand local behavior of flow around louvered fins and heat exchanger tubes, flow visualization results of velocity vectors and stream-lines with temperature counters are presented. It is investigated that increasing louver angle enhances convective heat transfer while hydraulic performance decreases due to increased pressure drop. The flow noticeably behaves louver directed for all louver angles The flow can easily travel between different fins. This case study has been done to design and manufacture an industrial louver fin heat exchanger.


2007 ◽  
Vol 36 (4) ◽  
pp. 215-229
Author(s):  
Kiyoshi Kawaguchi ◽  
Kenichi Okui ◽  
Takahiro Shimoura ◽  
Takaki Ohkouchi ◽  
Hiroyuki Osakabe ◽  
...  

Author(s):  
J. W. Watts ◽  
T. L. Bowen

Analytical studies are currently being conducted by the David Taylor Naval Ship R&D Center to assess the suitability of regenerative-cycle and intercooled, regenerative-cycle gas turbines for naval applications. This paper is the second part of a two-part paper which discusses results of initial investigations to identify attractive engine concepts based on existing turbomachinery and to consider the regenerator technology required to develop these engine concepts. Part I of the paper analyzed existing and next generation engines for performance improvement. Part II includes: definitions of performance parameters such as effectiveness and pressure drop, a discussion of regenerator types, and comments on regenerator materials, life, maintenance, and fouling. Tradeoffs between size, weight, and performance of plate-fin recuperators are examined using two of the hypothetical engines from Part I as examples. Results are compared for several different recuperator matrices to illustrate the effects of air-side and gas-side fin density and plate spacing on size, weight, and performance.


2021 ◽  
Author(s):  
praveen math

Abstract Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. They are also widely used in process applications as well as the refrigeration and air conditioning industry. The robustness and medium weighted shape of Shell and Tube heat exchangers make them well suited for high pressure operations. The aim of this study is to experiment, validate and to provide design suggestion to optimize the shell and tube heat exchanger (STHE). The heat exchanger is made of acrylic material with 2 baffles and 7 tubes made of stainless steel. Hot fluid flows inside the tube and cold fluid flows over the tube in the shell. 4 K-type thermocouples were used to read the hot and cold fluids inlet and outlet temperatures. Experiments were carried out for various combinations of hot and cold water flow rates with different hot water inlet temperatures. The flow conditions are limited to the lab size model of the experimental setup. A commercial CFD code was used to study the thermal and hydraulic flow field inside the shell and tubes. CFD methodology is developed to appropriately represent the flow physics and the procedure is validated with the experimental results. Turbulent flow in tube side is observed for all flow conditions, while the shell side has laminar flow except for extreme hot water temperatures. Hence transition k-kl-omega model was used to predict the flow better for transition cases. Realizable k- epsilon model with non-equilibrium wall function was used for turbulent cases. Temperature and velocity profiles are examined in detail and observed that the flow remains almost uniform to the tubes thus limiting heat transfer. Approximately 2/3 rd of the shell side flow does not surround the tubes due to biased flow contributing to reduced overall heat transfer and increased pressure loss. On the basis of these findings an attempt has been made to enhance the heat transfer by inducing turbulence in the shel l side flow. The two baffles were rotated in opposite direction to each other to achieve more circulation in the shell side flow and provide more contact with tube surface. Various positions of the baffles were simulated and studied using CFD analysis and th e results are summarized with respect to heat transfer and pressure loss.


Sign in / Sign up

Export Citation Format

Share Document