scholarly journals Mechanical Properties of Thermoplastic Composites Made of Commingled Carbon Fiber/Nylon Fiber

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3206
Author(s):  
Mizuki Ono ◽  
Masachika Yamane ◽  
Shuichi Tanoue ◽  
Hideyuki Uematsu ◽  
Yoshihiro Yamashita

Commingled yarns consisting of thermoplastic nylon fibers and carbon fibers can be used to produce superior carbon fiber reinforced thermoplastics (CFRTP) by applying fiber spreading technology after commingling. In this study, we examined whether spread commingled carbon fiber/nylon fiber yarns could reduce the impregnation distance, as there are few reports on this. From this study, the following are revealed. The impregnation speed of the nylon resin on the carbon fiber was very fast, less than 1 min. As the molding time increased, the tensile strength and tensile fracture strain slightly decreased, and the nylon resin deteriorated. The effects of molding time on flexural strength, flexural modulus, and flexural fracture strain were negligible. From the cross-sectional observation conducted to confirm the impregnation state of the matrix resin, no voids were observed in the molded products, regardless of molding time or molding pressure, indicating that resin impregnation into the carbon fiber bundle of the spread commingled yarn fabric was completed at a molding pressure of 5 MPa and a molding time of 5 min.

Author(s):  
Mizuki Ono ◽  
Masachika Yamane ◽  
Shuichi Tanoue ◽  
Yoshihiro Yamashita ◽  
Hideyuki Uematsu

Fiber-opening treatment of commingled yarns consisting of thermoplastic nylon fibers and carbon fibers could produce superior CFRTP, but few studies toward that end have been conducted. In this study, we investigated whether an open weave fabric consisting of commingled yarns made of carbon and nylon fibers could shorten the impregnation distance of resin to carbon fibers, and there are few reports on the design of fabrics by opening carbon fiber bundles consisting of commingled yarns. From this study, following are cleared. The impregnation speed of the nylon resin on the carbon fiber was very fast, less than 1 minute. As the molding time increased, the tensile strength and tensile fracture strain slightly decreased and the nylon resin deteriorated. The effects of molding time on flexural strength, flexural modulus, and flexural fracture strain were negligible. From the cross-sectional observation conducted to confirm the impregnation state of the matrix resin, no voids were observed in the molded products regardless of molding time or molding pressure, indicating that resin impregnation into the carbon fiber bundle of the open-fiber mixed yarn fabric was completed at a molding pressure of 5 MPa and a molding time of 5 min.


Author(s):  
Satoshi Kobayashi ◽  
Toshiko Osada

Abstract Effect of molding condition on resin impregnation behavior and the associated mechanical properties were investigated for carbon fabric reinforced thermoplastic composites. Carbon fiber yarn (TORAYCA, Toray) was used as a reinforcement, and thermoplastic PI (AURUM PL 450 C, Mitsui Chemicals) was used as the matrix. CFRTP textile composites were compression-molded with a hot press system under the molding temperature, 390 °C, 410 °C and 430 °C, molding pressure 2 MPa and 4 MPa and molding time 0∼300 s. In order to evaluate the impregnated state, cross sectional observation was performed with an optical microscope. Specimen cross-section was polished and finished with alumina slurry for a clear observation. The images observed were processed through image processing software to obtained impregnation ratio which defined as the resin impregnation area to the cross-sectional area of a fiber yarn. Resin impregnation was accelerated with molding temperature and pressure. At molding temperature more than 410 °C, resin impregnation was similar irrespective of temperature. Tensile test results indicated that modulus and strength increased with resin impregnation. Resin impregnation during molding was predicted using the analytical model based on Darcy’s law and continuity condition. The analysis could successfully predict the impregnation behavior despite the difference in molding pressure and temperature.


2014 ◽  
Vol 627 ◽  
pp. 177-180
Author(s):  
Kazuto Tanaka ◽  
Shunsuke Maehata ◽  
Tsutao Katayama ◽  
Masahiro Shinohara

Matrices for carbon fiber reinforced thermoplastics are appropriate to use comparatively cheaper resins such as polyamide. However polyamide 6 is highly hygroscopic and the mechanical properties of materials are reported to be degraded by water absorption. Polyoxamide (PX) has been developed as polyamide resins with low hygroscopicity. In this study, the effect of hot water environment on the tensile fracture properties of carbon fiber/polyoxamide composites has been clarified.


Sign in / Sign up

Export Citation Format

Share Document