scholarly journals Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4404
Author(s):  
Sebastián Bonardd ◽  
David Díaz Díaz ◽  
Angel Leiva ◽  
César Saldías

Dendrimers (from the Greek dendrosàtree; merosà part) are macromolecules with well-defined three-dimensional and tree-like structures. Remarkably, this hyperbranched architecture is one of the most ubiquitous, prolific, and recognizable natural patterns observed in nature. The rational design and the synthesis of highly functionalized architectures have been motivated by the need to mimic synthetic and natural-light-induced energy processes. Dendrimers offer an attractive material scaffold to generate innovative, technological, and functional materials because they provide a high amount of peripherally functional groups and void nanoreservoirs. Therefore, dendrimers emerge as excellent candidates since they can play a highly relevant role as unimolecular reactors at the nanoscale, acting as versatile and sophisticated entities. In particular, they can play a key role in the properties of light-energy harvesting and non-radiative energy transfer, allowing them to function as a whole unit. Remarkably, it is possible to promote the occurrence of the FRET phenomenon to concentrate the absorbed energy in photoactive centers. Finally, we think an in-depth understanding of this mechanism allows for diverse and prolific technological applications, such as imaging, biomedical therapy, and the conversion and storage of light energy, among others.

2021 ◽  
Author(s):  
Xiang Ma ◽  
Liangwei Ma ◽  
Qiangyang Xu ◽  
Bingbing Ding ◽  
Zizhao Huang ◽  
...  

In this work, a cocktail approach toward tunable organic long-lived luminescence materials in solid, solution, and gel states is proposed. The tunable long-lived luminescence (τ > 0.7 s) is realized by controlling the energy transfer via manipulating the photo-induced isomerization of the energy acceptor (5). The afterglow can be regulated between blue and yellow emission upon irradiation of UV or visible light. And the “apparent lifetime” for the long-lived fluorescence is the same as the lifetime of the energy donor. The function is relying on the simple radiative energy transfer (reabsorption) between a long-lived phosphorescence and a highly efficient fluorescent isomer (5b), rather than the complicated communication between the excited state of the molecules such as Förster resonance energy transfer or Dexter energy transfer. The simple working principle endows this strategy with huge universality, flexibility, and operability. This work offers an extremely simple, feasible, and universal way to construct tunable afterglow materials in solid, solution, and gel states.


2013 ◽  
Vol 4 ◽  
pp. 714-725 ◽  
Author(s):  
Tanujjal Bora ◽  
Karthik Kunjali Lakshman ◽  
Soumik Sarkar ◽  
Abhinandan Makhal ◽  
Samim Sardar ◽  
...  

In recent years, nanotechnology has gained significant interest for applications in the medical field. In this regard, a utilization of the ZnO nanoparticles for the efficient degradation of bilirubin (BR) through photocatalysis was explored. BR is a water insoluble byproduct of the heme catabolism that can cause jaundice when its excretion is impaired. The photocatalytic degradation of BR activated by ZnO nanoparticles through a non-radiative energy transfer pathway can be influenced by the surface defect-states (mainly the oxygen vacancies) of the catalyst nanoparticles. These were modulated by applying a simple annealing in an oxygen-rich atmosphere. The mechanism of the energy transfer process between the ZnO nanoparticles and the BR molecules adsorbed at the surface was studied by using steady-state and picosecond-resolved fluorescence spectroscopy. A correlation of photocatalytic degradation and time-correlated single photon counting studies revealed that the defect-engineered ZnO nanoparticles that were obtained through post-annealing treatments led to an efficient decomposition of BR molecules that was enabled by Förster resonance energy transfer.


2011 ◽  
Vol 440 (3) ◽  
pp. 319-327 ◽  
Author(s):  
Yoshifumi Itoh ◽  
Ralf Palmisano ◽  
Narayanapanicker Anilkumar ◽  
Hideaki Nagase ◽  
Atsushi Miyawaki ◽  
...  

Homodimerization of the membrane-bound collagenase MT1-MMP [membrane-type 1 MMP (matrix metalloproteinase)] is crucial for its collagenolytic activity. However, it is not clear whether this dimerization is regulated during cellular invasion into three-dimensional collagen matrices. To address this question, we established a fluorescence resonance energy transfer system to detect MT1-MMP dimerization and analysed the process in cells invading through three-dimensional collagen. Our data indicate that dimerization occurs dynamically and constantly at the leading edge of migrating cells, but not the trailing edge. We found that polarized dimerization was not due to ECM (extracellular matrix) attachment, but was rather controlled by reorganization of the actin cytoskeleton by the small GTPases, Cdc42 (cell division cycle 42) and Rac1. Our data indicate that cell-surface collagenolytic activity is regulated co-ordinately with cell migration events to enable penetration of the matrix physical barrier.


Sign in / Sign up

Export Citation Format

Share Document