collagenolytic activity
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 28)

H-INDEX

50
(FIVE YEARS 5)

2021 ◽  
Vol 11 (23) ◽  
pp. 11511
Author(s):  
Stanislav Sukhikh ◽  
Svetlana Noskova ◽  
Svetlana Ivanova ◽  
Elena Ulrikh ◽  
Alexsander Izgaryshev ◽  
...  

This paper aimed to study the biodegradation of collagen-containing waste (pork skin) induced by collagenase and Neutrase 1.5 MG enzymes and compare the amino acid, peptide, and carbohydrate composition of hydrolysis products. It was found that the degree of biodegradation of collagen-containing raw materials (pork skin) reached 78% when using an enzyme preparation (collagenase with a concentration of 250 U/g of the substrate) at pH 7.0, 40 °C, and a 360 min process duration. It was shown that the content of peptides with a molecular weight of 6.5–14.0 kDa in the hydrolysis products (collagenase) of collagen-containing wastes was 13.4 ± 0.40%, while in the products of hydrolysis (Neutrase 1.5 MG) it was 12.8 ± 0.38%. The study found that the hydrolysis products (Neutrase 1.5 MG) of collagen-containing raw materials contain fewer hexoses, free hexosamines, and hyaluronic acid than the hydrolysis products (collagenase) of collagen-containing raw materials. The content of chondroitin sulfates is practically the same in all samples of hydrolysis products. Proteases with collagenolytic activity are widely used in industry. Recently, they have increasingly been used in pharmaceutical, food, and other industries. Collagenases are promising enzymes for the production of chondroprotectors used for the treatment of osteoarthritis.


2021 ◽  
Vol 22 (22) ◽  
pp. 12276
Author(s):  
Elke Pach ◽  
Maike Kümper ◽  
Julia E. Fromme ◽  
Jan Zamek ◽  
Fabian Metzen ◽  
...  

Maintaining a balanced state in remodeling the extracellular matrix is crucial for tissue homeostasis, and this process is altered during skin cancer progression. In melanoma, several proteolytic enzymes are expressed in a time and compartmentalized manner to support tumor progression by generating a permissive environment. One of these proteases is the matrix metalloproteinase 14 (MMP14). We could previously show that deletion of MMP14 in dermal fibroblasts results in the generation of a fibrotic-like skin in which melanoma growth is impaired. That was primarily due to collagen I accumulation due to lack of the collagenolytic activity of MMP14. However, as well as collagen I processing, MMP14 can also process several extracellular matrices. We investigated extracellular matrix alterations occurring in the MMP14-deleted fibroblasts that can contribute to the modulation of melanoma growth. The matrix deposited by cultured MMP14-deleted fibroblast displayed an antiproliferative and anti-migratory effect on melanoma cells in vitro. Analysis of the secreted and deposited-decellularized fibroblast’s matrix identified a few altered proteins, among which the most significantly changed was collagen XIV. This collagen was increased because of post-translational events, while de novo synthesis was unchanged. Collagen XIV as a substrate was not pro-proliferative, pro-migratory, or adhesive, suggesting a negative regulatory role on melanoma cells. Consistent with that, increasing collagen XIV concentration in wild-type fibroblast-matrix led to reduced melanoma proliferation, migration, and adhesion. In support of its anti-tumor activity, enhanced accumulation of collagen XIV was detected in peritumoral areas of melanoma grown in mice with the fibroblast’s deletion of MMP14. In advanced human melanoma samples, we detected reduced expression of collagen XIV compared to benign nevi, which showed a robust expression of this molecule around melanocytic nests. This study shows that loss of fibroblast-MMP14 affects melanoma growth through altering the peritumoral extracellular matrix (ECM) composition, with collagen XIV being a modulator of melanoma progression and a new proteolytic substrate to MMP14.


2021 ◽  
pp. 1-7
Author(s):  
Shivani Sachdeva ◽  
Ameet Mani ◽  
Harish Saluja

Chronic periodontitis is nowadays popularly regarded as Dysbiosis, [1] which causes destruction of tissues rich in collagen like periodontal ligament, alveolar bone and gingival connective tissue. The oral biofilm comprises many periodontal pathogens better regarded as ‘triggers’ in causing chronic periodontitis. Since, not everyone will be affected in the same manner due to periodontal pathogens. Some might not elicit a host response while, the others might have exaggerated response. So, host modulation therapy came into existence to counteract the exaggerated host response. The chemically modified tetracyclines (CMTs) have emerged to inhibit the inflammatory response or to reduce the collagenolytic activity of host. Though a derivative of tetracyclines, it still lacks an antimicrobial action and hence, can be used for periodontitis for longer duration with no adverse effects of gastrointestinal toxicity which parent tetracyclines have.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xu Zhang ◽  
Mengchu Gao ◽  
Sadaqat Ali Chattha ◽  
Yiwen Zhu ◽  
Biyu Peng ◽  
...  

Abstract Traditionally, universally used pelt bating technologies rely on the application of trypsin, neutral and alkaline microbial proteases but suffer from complicated operation, limited bating efficiency and unsatisfactory leather performance. Therefore, devising a new pelt bating approach to achieve high bating efficiency and excellent leather performance has always been wished for by the leather industry. To pursue this goal, years of persistent research work enabled us to develop a novel approach for pelt bating by means of acidic proteases in pickling process. Initially, basic enzymatic characteristics and bating effectiveness of several typical acidic proteases in pelt pickling medium were investigated; then, the bating effectiveness through the quantitative characterization of protease activity of the optimal acidic protease was compared with that of the conventional bating enzyme. The results indicated that all of the selected acidic proteases had good salt-tolerance and exhibited optimum activity at pH 3.0–4.0. The novel pickling-bating method based on microbial origin acidic protease L80A led to an outstanding performance on pelt bating at the dosage of 150 U/mL of collagenolytic activity. The bating effectiveness of acidic protease L80A was comparable to and even better than that of trypsin BEM due to its moderate proteolytic ability. Moreover, the deep and even penetration of acidic protease in the pelt permitted it to produce soft, organoleptically stable and overall better quality crust leather than that of the conventional trypsin bating method. Additionally, pelt bating was performed along with the pickling process without extra inactivation and washing operation, making the bating operation more efficient, economical, and environment friendly. Results had made us to conclude that this cutting-edge acidic proteases based pickling-bating method could be the first step/ way forward to replace the decades-old traditional pelt bating technology.


2021 ◽  
Vol 10 (02) ◽  
pp. 158-162
Author(s):  
Mamoora Arslaan ◽  
Nasim Karim ◽  
Wahab Baksh Kadri ◽  
Shama Asghar

Periodontal disease is a chronic inflammatory disease of periodontium characterized by increased pocket depth, clinical attachment loss, sulcular bleeding, and bone loss. Bacterial plaque bio-film stimulates host derived enzymes and cytokines like TNF , IL-1 and matrix metalloproteases that lead to destruction of periodontium, collagenolytic activity, decreased bone mineral density, intra-bony defects and ultimately bone loss. Chronic periodontitis is managed by conventional and systemic approach, where conventional therapy comprises of scaling and root planning. Mechanical debridement of plaque also requires an adjunct to eradicate the root cause of progressing disease. Hence, worldwide paradigm has shifted towards novel therapies; therefore, local delivery of drug is now preferred due to direct access to target sites with considerably less adverse effects and a better approach to deal with chronic periodontitis. The nano-particle technology to treat periodontitis is still an emerging and promising strategy for the management of disease with the provision of minimal dose, less invasive procedure and clinical efficacy.


2021 ◽  
Vol 46 (4) ◽  
pp. 1-8
Author(s):  
Jessica Costa SILVA ◽  
Luiz Henrique Svintiskas LINO ◽  
Márcia Nieves CARNEIRO DA CUNHA ◽  
Juanize Matias da Silva BATISTA ◽  
Vagne Melo OLIVEIRA ◽  
...  

Internal viscera fish are potential sources of protein biomolecules of biopharmaceutical interest. However, this residue is frequently discarded inappropriately. The possibility to obtain by products of higher added value is a reality. Inside this view attention must be given to processes for the recovery and extraction of target molecules. However, the high cost of processing these residues is one of the obstacles to their reuse; techniques that facilitate their handling and make the process cheaper are desirable, such as extraction in a two-phase aqueous system. Thus, the aim of this study was to extract collagenolytic enzymes from common snook (Centropomus undecimalis) using a two-phase aqueous system (polyethylene glycol/citrate), according to the 24 factorial design, using as variables: molar mass of PEG (MPEG), PEG concentration (CPEG), citrate concentration (CCIT), pH, still, considering purification factor (FP), partition coefficient (K), and yield (Y). The collagenolytic activity of the crude extract was 102.41 U mg-1, after partitioning, was purified 3.91 times (MPEG: 8000; CPEG: 20.0%; CCIT: 20.0% and pH 6.0). Inhibition (U mg-1) was observed in benzamidine (22.51), TLCK (21.05), TPCK (21.29), and PMSF (23.05), signaling to be a serine-protease. The results showed the advantage of this semipurification technique as concerns to the low cost of extraction and purification, adding value to the fishing source material and allocating the residues from its processing to the industry.


Author(s):  
Kosaku Nishimura ◽  
Keisuke Higashiya ◽  
Naoki Ueshima ◽  
Kenji Kojima ◽  
Teisuke Takita ◽  
...  

Abstract Ficus carica produces, in addition to the cysteine protease ficin, a serine protease. Earlier study on a serine protease from F. carica cultivar Brown Turkey showed that it specifically degraded collagen. In this study, we characterized the collagenolytic activity of a serine protease in the latex of F. carica cultivar Masui Dauphine. The serine protease degraded denatured, but not undenatured, acid-solubilized type I collagen. It also degraded bovine serum albumin, while the collagenase from Clostridium histolyticum did not. These results indicated that the serine protease in Masui Dauphine is not collagen-specific. The protease was purified to homogeneity by two-dimensional gel electrophoresis, and its partial amino acid sequence was determined by liquid chromatography-MS/MS. BLAST searches against the Viridiplantae (green plants) genome database revealed that the serine protease was a subtilisin-like protease. Our results contrast with the results of the earlier study stating that the serine protease from F. carica is collagen-specific.


2021 ◽  
Author(s):  
Yoshifumi Itoh ◽  
Michael Ng ◽  
Akira Wiberg ◽  
Katsuaki Inoue ◽  
Narumi Hirata ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mika Kushamae ◽  
Haruka Miyata ◽  
Manabu Shirai ◽  
Kampei Shimizu ◽  
Mieko Oka ◽  
...  

AbstractSubarachnoid hemorrhage due to rupture of an intracranial aneurysm has a quite poor prognosis after the onset of symptoms, despite the modern technical advances. Thus, the mechanisms underlying the rupture of lesions should be clarified. To this end, we obtained gene expression profile data and identified the neutrophil-related enriched terms in rupture-prone lesions using Gene Ontology analysis. Next, to validate the role of neutrophils in the rupture of lesions, granulocyte-colony stimulating factor (G-CSF) was administered to a rat model, in which more than half of induced lesions spontaneously ruptured, leading to subarachnoid hemorrhage. As a result, G-CSF treatment not only increased the number of infiltrating neutrophils, but also significantly facilitated the rupture of lesions. To clarify the mechanisms of how neutrophils facilitate this rupture, we used HL-60 cell line and found an enhanced collagenolytic activity, corresponding to matrix metalloproteinase 9 (MMP9), upon inflammatory stimuli. The immunohistochemical analyses revealed the accumulation of neutrophils around the site of rupture and the production of MMP9 from these cells in situ. Consistently, the collagenolytic activity of MMP9 could be detected in the lysate of ruptured lesions. These results suggest the crucial role of neutrophils to the rupture of intracranial aneurysms; implying neutrophils as a therapeutic or diagnostic target candidate.


Sign in / Sign up

Export Citation Format

Share Document