scholarly journals Automated Stacker Cranes: A Two-Step Storage Reallocation Process for Enhanced Service Efficiency

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Bashir Salah ◽  
Mohammed Alnahhal ◽  
Rafiq Ahmad

Automated storage and retrieval systems (AS/RS) play a key role in improving the performance of automated manufacturing systems, warehouses, and distribution centers. In the modern manufacturing industry, the term (AS/RS) refers to various methods under computer control for storing and retrieving loads automatically from defined storage locations. Using an (AS/RS) is not considered a value-added activity. Therefore, the longer (AS/RS) travels, the more expensive the warehousing process becomes. This paper presents an algorithm for minimizing total travel distance/time between input/output (I/O) stations. The proposed algorithm is used to manage the storage and retrieval orders on warehouse shelves in class-based storage on the storage racks. It contains two steps: the first step is to evacuate some storage compartments (locations) near the I/O station; in the second step, some tote bins are reallocated to compartments closer to the I/O station. Among the features of this algorithm are mechanisms that determine the number of reallocated tote bins, which tote bins to reallocate, and in which direction (toward the I/O station or away from it). A simulation model using R software developed specifically for this purpose was used to validate the suggested method. Based on the results, the new method can reduce the service time per order by about 10% to 20%, depending on parameters like the number of orders and the height of the storage rack.

Author(s):  
Supachai Vongbunyong ◽  
Perawat Roengritronnachai ◽  
Savanut Kongsanit ◽  
Chawisa Chanok-owat ◽  
Pongsakorn Polchankajorn

2021 ◽  
Vol 18 (1) ◽  
pp. 99
Author(s):  
Afzeri Tamsir

 Automated Storage and Retrieval Systems (ASRS) have been widely used in warehousing systems to speed up load movements and save storage space. ASRS is an integrated system that is equipped with a controller and arm for the collection and storage of goods. This paper discusses the results of developing a system for taking and storing goods for various loads. The prototype element consists of a mechanism for retrieving, placing and application for data collection into the database. In this research, the design and development of ASRS was carried out to be applied in the storage of products of various sizes which is suitable for small size industries. The development process includes investigating features that have been developed in the ASRS, operating procedures, hardware selection and software development in accordance with the mechanism designed. Numerical control which moves the carrier element with high resolution is applied to be able to place the load in a changing position. Development and testing is carried out to ensure the performance of the tool runs well and the data storage that includes the identification and size of the load can be recorded properly.


2019 ◽  
Vol 25 (5) ◽  
pp. 864-874 ◽  
Author(s):  
Christopher-Denny Matte ◽  
Michael Pearson ◽  
Felix Trottier-Cournoyer ◽  
Andrew Dafoe ◽  
Tsz Ho Kwok

PurposeThe purpose of this paper is to introduce a novel technique for printing with multiple materials using the DLP method. Digital-light-processing (DLP) printing uses a digital projector to selectively cure a full layer of resin using a mask image. One of the challenges with DLP printing is the difficulty of incorporating multiple materials within the same part. As the part is cured within a liquid basin, resin switching introduces issues of cross-contamination and significantly increased print time.Design/methodology/approachThe material handling challenges are investigated and addressed by taking inspiration from automated storage and retrieval systems and using an active cleaning solution. The material tower is a compact design to facilitate the storage and retrieval of different materials during the printing process. A spray mechanism is used for actively cleaning excess resin from the part between material changes.FindingsChallenges encountered within the multi-material DLP technology are addressed and the experimental prototype validates the proposed solution. The system has a cleaning effectiveness of over 90 per cent in 15 s with the build area of 72 inches, in contrast to the previous work of 50 per cent cleaning effectiveness in 2 min with only 6 inches build area. The method can also hold more materials than the previous work.Originality/valueThe techniques from automated storage and retrieval system is applied to develop a storage system so that the time complexity of swapping is reduced from linear to constant. The whole system is sustainable and scalable by using a spraying mechanism. The design of the printer is modular and highly customizable, and the material waste for build materials and cleaning solution is minimized.


Sign in / Sign up

Export Citation Format

Share Document