scholarly journals Simulating the Filtration Effects of Cement-Grout in Fractured Porous Media with the 3D Unified Pipe-Network Method

Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 46 ◽  
Author(s):  
Zizheng Sun ◽  
Xiao Yan ◽  
Weiqi Han ◽  
Guowei Ma ◽  
Yiming Zhang

In grouting process, filtration is the retention and adsorption of cement-grout particles in a porous/fractured medium. Filtration partly/even completely blocks the transportation channels in the medium, greatly decreasing its permeability. Taking into account filtration effects is essential for accurately estimating the grout penetration region. In this paper, the 3D unified pipe-network method (UPM) is adopted for simulating 3D grout penetration process in a fractured porous medium, considering filtration effects. The grout is assumed to exhibit two-phase flow, and the filtration effects depend on not only the concentration and rheology of the grout but also the porosity and permeability of the fractured porous medium. By comparing the model with the experimental results, we firstly verify the proposed numerical model. Then sensitivity analysis is conducted, showing the influences of grout injection pressures, the water–cement ratios of grout (W/C) and the grout injection rates on filtration effect. Finally, the grout filtration process in a complex 3D fractured network is simulated, indicating that the size of the grout penetration region is limited due to filtration.

Micromachines ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 38 ◽  
Author(s):  
Shao-Yiu Hsu ◽  
Zhong-Yao Zhang ◽  
Chia-Wen Tsao

2019 ◽  
Vol 1404 ◽  
pp. 012039
Author(s):  
A A Pyatkov ◽  
S P Rodionov ◽  
V P Kosyakov ◽  
N G Musakaev

2020 ◽  
Author(s):  
Jenna Poonoosamy ◽  
Sophie Roman ◽  
Cyprien Soulaine ◽  
Hang Deng ◽  
Sergi Molins ◽  
...  

<p>The understanding of dissolution and precipitation of minerals and its impact on the transport of fluids in fractured media is essential for various subsurface applications including shale gas production using hydraulic fracturing (“fracking”), CO<sub>2</sub> sequestration, or geothermal energy extraction. The implementation of such coupled processes into numerical reactive transport codes requires a mechanistic process understanding and model validation with quantitative experiments. In this context, we developed a microfluidic “lab-on-chip” of a reactive fractured porous medium of 800 µm × 900 µm size with 10 µm depth. The fractured medium consisted of compacted celestine grains (grain size 4 – 9 µm). A BaCl<sub>2</sub> solution was injected into the microreactor at a flow rate of 500 nl min<sup>-1</sup>, leading to the dissolution of celestine and an epitaxial growth of barite on its surface (Poonoosamy et al., 2016). Our investigations including confocal Raman spectroscopic techniques allowed for monitoring the temporal mineral transformation at the pore scale in 2D and 3D geometries. The fractured porous medium causes a heterogeneous flow field in the microreactor that leads to spatially different mineral transformation rates. In these experiments, the dynamic evolution of surface passivation processes depends on two intertwined processes: i) the dissolution of the primary mineral that is needed for the subsequent precipitation, and ii) the suppression of the dissolution reaction as a result of secondary mineral precipitation. However, the description of evolving reactive surface areas to account for mineral passivation mechanisms in reactive transport models following Daval et al. (2009) showed several limitations, and prompt for an improved description of passivation processes that includes the diffusive properties of secondary phases (Poonoosamy et al., 2020). The results of the ongoing microfluidic experiments in combination with advanced pore-scale modelling will provide new insights regarding application and extension of the description of surface passivation processes to be included in (continuum-scale) reactive transport models.</p><p>Daval D., Martinez I., Corvisier J., Findling N., Goffé B. and Guyotac F. (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modelling. Chem. Geol. 265(1–2), 63-78.</p><p>Poonoosamy J., Curti E., Kosakowski G., Van Loon L. R., Grolimund D. and Mäder U. (2016) Barite precipitation following celestite dissolution in a porous medium: a SEM/BSE and micro XRF/XRD study. Geochim. Cosmochim. Acta 182, 131-144.</p><p>Poonoosamy J., Klinkenberg M., Deissmann G., Brandt F., Bosbach D., Mäder U. and Kosakowski G. (2020) Effects of solution supersaturation on barite precipitation in porous media and consequences on permeability: experiments and modelling. Geochim. Cosmochim. Acta 270, 43-60.</p>


Sign in / Sign up

Export Citation Format

Share Document