grout injection
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 1 (2) ◽  
pp. 72-79
Author(s):  
Arief Andriansyah ◽  
Lusmeilia Afriani ◽  
Dyah Indriana Kusumastuti ◽  
Endro P. Wahono

This paper discusses the process of original soil stabilization in Trans Sumatra Bakauheni-Terbanggi Besar Toll Road Project Package 2 Sidomulyo-Kotabaru. The soil replacement process was conducted at approximately 24 kilometres along the toll’s main road. The original soil bearing capacity analysis stage was by performing a Dynamic Cone Penetrometer (DCP) and Sondir test to analyze the deep of hard soil. A soil replacement was carried out to replace the original soil with soil that has appropriate specification. the piling up process was conducted in stages, which has Sandstone in such of the layer. The research done about the landfill sample was retaken and collected at 68 points. The stockpile soil samples collection was then followed by the analysis which was conducted in the laboratory to find the soil bearing capacity. There are 4 types of bearing capacity parameters analyzed, namely specific gravity, water content, aggregate analysis (Sieve Analysis), and consistency limit (Atterberg Limit). Referring to it, then there was the classification of soil types according to AASHTO M145 & Casagrande Soil Classification System. A point that has settlement after soil replacement is STA 52+000. So, there need to add soil stabilization, that is cement grout injection. Researchers analyzed the soil settlement by interpretation method. Results showed that soil replacement and cement grout injection could decrease a soil settlement by about 15.07 cm to become 0.93 cm.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7599
Author(s):  
Jong-Yong Lee ◽  
Hyun-Jae Seo ◽  
Kyu-Hwan Oh ◽  
Jiang Bo ◽  
Sang-Keun Oh

Yield stress parameter derivation was conducted by stress-strain curve analysis on four types of grout injection leakage repair materials (GILRM); acrylic, epoxy, urethane and SPRG grouts. Comparative stress-strain curve analysis results showed that while the yield stress point was clearly distinguishable, the strain ratio of SPRG reached up to 664% (13 mm) before material cohesive failure. A secondary experimental result comprised of three different common component ratios of SPRG was conducted to derive and propose an averaged yield stress curve graph, and the results of the yield stress point (180% strain ratio) were set as the basis for repeated stress-strain curve analysis of SPRGs of up to 15 mm displacement conditions. Results showed that SPRG yield stress point remained constant despite repeated cohesive failure, and the modulus of toughness was calculated to be on average 53.1, 180.7, and 271.4 N/mm2, respectively, for the SPRG types. The experimental results of this study demonstrated that it is possible to determine the property limits of conventional GILRM (acrylic, epoxy and urethane grout injection materials) based on yield stress. The study concludes with a proposal on potential application of GILRM toughness by finite element analysis method whereby strain of the material can be derived by hydrostatic pressure. Comparative analysis showed that the toughness of SPRG materials tested in this study are all able to withstand hydrostatic pressure range common to underground structures (0.2 N/mm2). It is expected that the evaluation method and model proposed in this study will be beneficial in assessing other GILRM materials based on their toughness values.


Author(s):  
Mohamed A. Mansour ◽  
M. Hesham El Naggar

Pressure grouted helical pile (PGHP) is an innovative piling system that allows a significant increase in helical pile capacity with relatively low additional cost. The pile is constructed by applying pressurized grout during the installation of conventional helical piles. The grout is injected into the ground through two nozzles welded to the hollow pile shaft. This paper presents a comprehensive laboratory study to investigate the effect of three different nozzles configurations on the shape and axial performance of PGHP. The results reveal a significant increase in the PGHP shaft resistance over that of the un-grouted helical pile due to the formation of a continuous grout column with a larger diameter, higher friction angle at the pile/soil interface, and higher lateral earth pressure around the pile. The shape and diameter of the created grout column depend on the nozzles configuration used for grout injection. An increase in the end-bearing resistance is observed due to grout dissipation into the supporting soil voids. The study also shows that PGHPs installed with the third nozzles configuration have the fastest installation rate and the highest compression and pullout resistances. Thus, the third nozzles configuration is recommended for PGHP construction.


Author(s):  
Masoud Forsat ◽  
Mohammad Taghipoor ◽  
Masoud Palassi

AbstractThe present research exposes the investigation on three-dimensional modeling of the single and twin metro tunnels for the case of the Tehran metro line. At first, simulation implemented on the comparison of the ground movements in the single and twin tunnels. Then the simulation has been performed on the influence of effective parameters of EPB-TBM on the surface settlements throughout excavation. The overcutting, shield conicity, grouting, and the final lining system modeled and the influence of face supporting pressure, grout injection pressure, as well as the clear distance of the tunnels, has been analyzed. The initial results showed a valid ground settlement behavior. The maximum settlements occurred at the end of the shield tail and it was higher in the single tunnel. The face supporting pressure had more effect on the surface settlement in comparison to the grout injection pressure. By increasing the face pressure in the single tunnel, the place of maximum settlement moved back while the grout pressure is insignificant for decreasing the settlements. Furthermore, the influence of the clear distance in the twin tunnels led to zero after the length of 30 m. Accordingly, for more distances, the tunnels must be examined independently and as two different single tunnels.


2020 ◽  
Vol 146 (4) ◽  
pp. 04020068
Author(s):  
Md. Fazle Rabbi ◽  
Richard L. Boudreau ◽  
Bhaskar C. S. Chittoori ◽  
Matthew Sotirin ◽  
Debakanta Mishra

2020 ◽  

<p>The use of microbial-induced carbonate precipitation (MICP) in soil reinforcement has attracted attention in the academic field in recent years. However, most of the existing studies have been conducted based on one-dimensional ( ) grout injection condition. The present study conducted in vitro and sand column experiments of MICP using a ureolytic bacterium (ATCC 11859) (three-dimensional ( ) and models were considered in the sand column experiments) as well as the feasibility and reinforcing effect of the MICP grout injection method. A comparison of the and grout injection methods showed that the specimens reinforced using the grout injection method had higher strength, better homogeneity, a greater content, and a larger permeability coefficient compared with the specimens reinforced using the grout injection method. The limitations of the model should be considered in future practical applications.</p>


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Dayang Xuan ◽  
Jian Li ◽  
Kaidan Zheng ◽  
Jialin Xu

Slurry flow in mining-induced overburden fractures is an important theoretical concept for the grouting design of longwall overburden grout injection engineering. In this study, a visual experimental simulation system of longwall overburden grouting was designed to study the flow, pressure distribution, consolidation, and fill thickness of fly ash slurry in overburden bedding separation. Experiments showed that the slurry generates a radial and bidirectional flow during nonpressure grouting and presents itself as an approximately elliptical dominant flow channel under pressure injection. This channel expanded horizontally along the strike direction and gradually became tabular. The slurry pressure increased as the grouting time increased. Although the pressure curves at different locations exhibited similar trends, their values did not decrease as the distance from the borehole center decreased during observations. Bleeding and consolidation occurred in the slurry as soon as it flowed out of the borehole to the fracture, and the degree of consolidation increased as a function of the distance from the injection borehole. The bleeding water gathered continually to the boundary of the bedding separation fracture and was then seeped to and stored by the underlying strata based on the injection pressure. The final injection fill is manifested as a half pace with a large thickness at the center. This research provides a theoretical basis for the design and optimization of overburden grout injection in underground longwall mining.


Sign in / Sign up

Export Citation Format

Share Document