Numerical Study of Two-Phase Filtration in a Fractured Porous Medium Based on Models of Porous Elasticity and Discrete Cracks

Author(s):  
D. Yu. Legostaev ◽  
S. P. Rodionov
Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 46 ◽  
Author(s):  
Zizheng Sun ◽  
Xiao Yan ◽  
Weiqi Han ◽  
Guowei Ma ◽  
Yiming Zhang

In grouting process, filtration is the retention and adsorption of cement-grout particles in a porous/fractured medium. Filtration partly/even completely blocks the transportation channels in the medium, greatly decreasing its permeability. Taking into account filtration effects is essential for accurately estimating the grout penetration region. In this paper, the 3D unified pipe-network method (UPM) is adopted for simulating 3D grout penetration process in a fractured porous medium, considering filtration effects. The grout is assumed to exhibit two-phase flow, and the filtration effects depend on not only the concentration and rheology of the grout but also the porosity and permeability of the fractured porous medium. By comparing the model with the experimental results, we firstly verify the proposed numerical model. Then sensitivity analysis is conducted, showing the influences of grout injection pressures, the water–cement ratios of grout (W/C) and the grout injection rates on filtration effect. Finally, the grout filtration process in a complex 3D fractured network is simulated, indicating that the size of the grout penetration region is limited due to filtration.


Micromachines ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 38 ◽  
Author(s):  
Shao-Yiu Hsu ◽  
Zhong-Yao Zhang ◽  
Chia-Wen Tsao

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hamid Shafiee ◽  
Elaheh NikzadehAbbasi ◽  
Majid Soltani

The magnetic field can act as a suitable control parameter for heat transfer and fluid flow. It can also be used to maximize thermodynamic efficiency in a variety of fields. Nanofluids and porous media are common methods to increase heat transfer. In addition to improving heat transfer, porous media can increase pressure drop. This research is a computational simulation of the impacts of a magnetic field induced into a cylinder in a porous medium for a volume fraction of 0.2 water/Al2O3 nanofluid with a diameter of 10 μm inside the cylinder. For a wide variety of controlling parameters, simulations have been made. The fluid flow in the porous medium is explained using the Darcy-Brinkman-Forchheimer equation, and the nanofluid flow is represented utilizing a two-phase mixed approach as a two-phase flow. In addition, simulations were run in a slow flow state using the finite volume method. The mean Nusselt number and performance evaluation criteria (PEC) were studied for different Darcy and Hartmann numbers. The results show that the amount of heat transfer coefficient increases with increasing the number of Hartmann and Darcy. In addition, the composition of the nanofluid in the base fluid enhanced the PEC in all instances. Furthermore, the PEC has gained its highest value at the conditions relating to the permeable porous medium.


2019 ◽  
Vol 1404 ◽  
pp. 012039
Author(s):  
A A Pyatkov ◽  
S P Rodionov ◽  
V P Kosyakov ◽  
N G Musakaev

2021 ◽  
Vol 51 (4) ◽  
pp. 229-239
Author(s):  
Sameh E. Ahmed ◽  
R.A Mohamed ◽  
A.M Ali ◽  
A.J Chamkha ◽  
M.S Soliman

This article presents a numerical study for a magnetohydrodynamic flow of a non-Newtonian Casson nanofluid over a stretching sheet embedded in a porous medium under the impacts of non-linear thermal radiation, heat generation/absorption, Joule heating and slips boundary conditions. A two-phase nanofluid model is applied to represent the nanofluid mixture. The porous medium is represented via the Darcy model. A similar solution is obtained for the governing equations and a numerical treatment based on the Runge-Kutta method is conducted to the resulting system of equations.  In this study, the controlling physical parameters are the Casson fluid parameter , the magnetic field , the radiation parameter , the Brownian motion parameter  and the thermophoresis parameter . The obtained results reveal that an increase in the Casson parameter enhances both of the local Nusselt and the Sherwood number while they are reduced as the non-linear radiation parameter increases. In addition, an increase in the magnetic field parameter supports the skin friction coefficient regardless the value of the Casson parameter.


Sign in / Sign up

Export Citation Format

Share Document