scholarly journals Discrete-Time Kalman Filter Design for Linear Infinite-Dimensional Systems

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 451
Author(s):  
Junyao Xie ◽  
Stevan Dubljevic

As the optimal linear filter and estimator, the Kalman filter has been extensively utilized for state estimation and prediction in the realm of lumped parameter systems. However, the dynamics of complex industrial systems often vary in both spatial and temporal domains, which take the forms of partial differential equations (PDEs) and/or delay equations. State estimation for these systems is quite challenging due to the mathematical complexity. This work addresses discrete-time Kalman filter design and realization for linear distributed parameter systems. In particular, the structural- and energy-preserving Crank–Nicolson framework is applied for model time discretization without spatial approximation or model order reduction. In order to ensure the time instance consistency in Kalman filter design, a new discrete model configuration is derived. To verify the feasibility of the proposed design, two widely-used PDEs models are considered, i.e., a pipeline hydraulic model and a 1D boundary damped wave equation.

Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1168 ◽  
Author(s):  
Ligang Sun ◽  
Hamza Alkhatib ◽  
Boris Kargoll ◽  
Vladik Kreinovich ◽  
Ingo Neumann

In this paper, we propose a new technique—called Ellipsoidal and Gaussian Kalman filter—for state estimation of discrete-time nonlinear systems in situations when for some parts of uncertainty, we know the probability distributions, while for other parts of uncertainty, we only know the bounds (but we do not know the corresponding probabilities). Similarly to the usual Kalman filter, our algorithm is iterative: on each iteration, we first predict the state at the next moment of time, and then we use measurement results to correct the corresponding estimates. On each correction step, we solve a convex optimization problem to find the optimal estimate for the system’s state (and the optimal ellipsoid for describing the systems’s uncertainty). Testing our algorithm on several highly nonlinear problems has shown that the new algorithm performs the extended Kalman filter technique better—the state estimation technique usually applied to such nonlinear problems.


2018 ◽  
Vol 75 ◽  
pp. 55-68 ◽  
Author(s):  
Daniel Viegas ◽  
Pedro Batista ◽  
Paulo Oliveira ◽  
Carlos Silvestre

2017 ◽  
Vol 24 (24) ◽  
pp. 5880-5897 ◽  
Author(s):  
Hamed Torabi ◽  
Naser Pariz ◽  
Ali Karimpour

In this paper, the state estimation problem for fractional-order nonlinear discrete-time stochastic systems is considered. A new method for the state estimation of fractional nonlinear systems using the statistically linearized method and cubature transform is presented. The fractional extended Kalman filter suffers from two problems. Firstly, the dynamic and measurement models must be differentiable and, secondly, nonlinearity is approximated by neglecting the higher order terms in the Taylor series expansion; by the proposed method in this paper, these problems can be solved using a statistically linearized algorithm for the linearization of fractional nonlinear dynamics and cubature transform for calculating the expected values of the nonlinear functions. The effectiveness of this proposed method is demonstrated through simulation results and its superiority is shown by comparing our method with some other present methods, such as the fractional extended Kalman filter.


Sign in / Sign up

Export Citation Format

Share Document