scholarly journals Effect of Barium Addition on Hydrolytic Enzymatic Activities in Food Waste Degradation under Anaerobic Conditions

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1371
Author(s):  
Fuad Ale ◽  
Roberto Castro-Muñoz ◽  
Blanca Estela Barragán-Huerta ◽  
Odín Rodríguez-Nava

Enzymatic hydrolysis of complex components of residual materials, such as food waste, is a rate-limiting step that conditionates the production rate of biofuels. Research into the anaerobic degradation of cellulose and starch, which are abundant components in organic waste, could contribute to optimize biofuels production processes. In this work, a lab-scale anaerobic semi-continuous hydrolytic reactor was operated for 171 days using food waste as feedstock; the effect of Ba2+ dosage over the activity of five hydrolytic enzymes was also evaluated. No significant effects were observed on the global performance of the hydrolytic process during the steady-state of the operation of the reactor, nevertheless, it was detected that Ba2+ promoted β-amylases activity by 76%, inhibited endoglucanases and α-amylases activity by 39 and 20%, respectively, and had no effect on β-glucosidases and glucoamylases activity. The mechanisms that rule the observed enzymatic activity changes remain unknown; however, the discussion in this paper provides hypothetical explanations for further research.

2002 ◽  
Vol 45 (12) ◽  
pp. 339-346 ◽  
Author(s):  
G. Eremektar ◽  
O. Karahan-Gul ◽  
F. Germirli-Babuna ◽  
S. Ovez ◽  
H. Uner ◽  
...  

Corn wet mill effluents are studied in terms of their characteristics relevant for biological treatment. They have a high COD of mainly soluble and biodegradable nature, with practically no soluble inert components. They generate a relatively high level of soluble residual metabolic products, which affects the choice of the appropriate biological treatment and favors aerobic activated sludge process. Experimental assessment of process kinetics yields typical values. Hydrolysis of the slowly biodegradable COD, the rate limiting step for the utilization of substrate, is characterized by an overall rate coefficient, which is within the range commonly associated for the hydrolysis of starch.


2000 ◽  
Vol 41 (3) ◽  
pp. 33-41 ◽  
Author(s):  
E. Salminen ◽  
J. Rintala ◽  
L.Ya. Lokshina ◽  
V.A. Vavilin

We studied anaerobic batch degradation of solid poultry slaughterhouse wastes with different initial waste and inoculum concentrations and waste-to-inoculum ratios and simulated the dynamics of the process with a new generation <METHANE> model. Our modelling results suggest that inhibited propionate degradation by long-chain fatty acids (LCFA) and inhibited hydrolysis by a high propionate concentration constituted the rate-limiting step in the waste degradation. Palmitate was the most abundant LCFA in the assays. Within 27 days of incubation, up to 0.55 to 0.67 m3 of methane (STP)/kg VS added was produced under the studied conditions. Lower waste-to-inoculum ratios exhibited a faster onset and rate of specific methane production. In all the assays, ammonification occurred within 3 to 6 days and accounted for 50 to 60% of total nitrogen.


2006 ◽  
Vol 50 (12) ◽  
pp. 4124-4131 ◽  
Author(s):  
Christopher R. Bethel ◽  
Andrea M. Hujer ◽  
Kristine M. Hujer ◽  
Jodi M. Thomson ◽  
Mark W. Ruszczycky ◽  
...  

ABSTRACT Among the TEM-type extended-spectrum β-lactamases (ESBLs), an amino acid change at Ambler position 104 (Glu to Lys) results in increased resistance to ceftazidime and cefotaxime when found with other substitutions (e.g., Gly238Ser and Arg164Ser). To examine the role of Asp104 in SHV β-lactamases, site saturation mutagenesis was performed. Our goal was to investigate the properties of amino acid residues at this position that affect resistance to penicillins and oxyimino-cephalosporins. Unexpectedly, 58% of amino acid variants at position 104 in SHV expressed in Escherichia coli DH10B resulted in β-lactamases with lowered resistance to ampicillin. In contrast, increased resistance to cefotaxime was demonstrated only for the Asp104Arg and Asp104Lys β-lactamases. When all 19 substitutions were introduced into the SHV-2 (Gly238Ser) ESBL, the most significant increases in cefotaxime and ceftazidime resistance were noted for both the doubly substituted Asp104Lys Gly238Ser and the doubly substituted Asp104Arg Gly238Ser β-lactamases. Correspondingly, the overall catalytic efficiency (k cat/Km ) of hydrolysis for cefotaxime was increased from 0.60 ± 0.07 μM−1 s−1 (mean ± standard deviation) for Gly238Ser to 1.70 ± 0.01 μM−1 s−1 for the Asp104Lys and Gly238Ser β-lactamase (threefold increase). We also showed that (i) k 3 was the rate-limiting step for the hydrolysis of cefotaxime by Asp104Lys, (ii) the Km for cefotaxime of the doubly substituted Asp104Lys Gly238Ser variant approached that of the Gly238Ser β-lactamase as pH increased, and (iii) Lys at position 104 functions in an energetically additive manner with the Gly238Ser substitution to enhance catalysis of cephalothin. Based on this analysis, we propose that the amino acid at Ambler position 104 in SHV-1 β-lactamase plays a major role in substrate binding and recognition of oxyimino-cephalosporins and influences the interactions of Tyr105 with penicillins.


Sign in / Sign up

Export Citation Format

Share Document