scholarly journals Synthesis of a Benzothiadiazole-Based D−A Molecule with Aggregation-Induced Emission and Controlled Assembly Properties

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1094
Author(s):  
Songhua Chen ◽  
Yongqi Liu ◽  
Meiyun He ◽  
Jianhua Huang

An electron-donating−accepting (D−A) molecule, namely, 4-(1-(4-(9H-carbazol-9-yl)phenyl)-1H-1,2,3-triazol-4-yl)benzo[c][1,2,5]thiadiazole (BT-SCC) containing carbazole as the donor moiety and benzothiadiazole as the acceptor moiety is prepared. Single-crystal X-ray structure analysis elucidated the multiple intermolecular interactions, such as hydrogen bonds, CH…π, and π…π interplays. Interestingly, the aggregation-induced emission phenomenon is observed for BT-SCC featured with enhanced fluorescent quantum yield from diluted solution of CH2Cl2 (Φ = ca. 0.1) to CH2Cl2/hexane mixed solutions or solid states (Φ = ca. 0.8). Finally, aggregates of BT-SCC are obtained through precipitating from hot and saturated solutions or solvent-vapor methods and the aggregating morphologies could be easily controlled through different preparation methods. Fabulous cube-like micro-crystals and nanospherical structures are obtained, which is established by the synergistic effects of the multiple non-covalent interactions, endowing potential utility in the field of optoelectronic devices.

2009 ◽  
Vol 11 (1) ◽  
pp. 97-100 ◽  
Author(s):  
Abil E. Aliev ◽  
Joëlle Moïse ◽  
William B. Motherwell ◽  
Miloslav Nič ◽  
Denis Courtier-Murias ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Masaki Takahashi ◽  
Nozomu Ito ◽  
Naoki Haruta ◽  
Hayato Ninagawa ◽  
Kohei Yazaki ◽  
...  

AbstractAnions often quench fluorescence (FL). However, strong ionic hydrogen bonding between fluorescent dyes and anion molecules has the potential to control the electronic state of FL dyes, creating new functions via non-covalent interactions. Here, we propose an approach, utilising ionic hydrogen bonding between urea groups and anions, to control the electronic states of fluorophores and develop an aggregation-induced emission enhancement (AIEE) system. The AIEE ionic hydrogen-bonded complex (IHBC) formed between 1,8-diphenylnaphthalene (p-2Urea), with aryl urea groups at the para-positions on the peri-phenyl rings, and acetate ions exhibits high environmental sensitivities in solution phases, and the FL quantum yield (QY) in ion-pair assemblies of the IHBC and tetrabutylammonium cations is more than five times higher than that of the IHBC in solution. Our versatile and simple approach for the design of AIEE dye facilitates the future development of environment-sensitive probes and solid-state emitting materials.


Author(s):  
Cristobal Perez ◽  
Melanie Schnell ◽  
Peter Schreiner ◽  
Norbert Mitzel ◽  
Yury Vishnevskiy ◽  
...  

2020 ◽  
Author(s):  
Luis Vasquez ◽  
Agnieszka Dybala-Defratyka

<p></p><p>Very often in order to understand physical and chemical processes taking place among several phases fractionation of naturally abundant isotopes is monitored. Its measurement can be accompanied by theoretical determination to provide a more insightful interpretation of observed phenomena. Predictions are challenging due to the complexity of the effects involved in fractionation such as solvent effects and non-covalent interactions governing the behavior of the system which results in the necessity of using large models of those systems. This is sometimes a bottleneck and limits the theoretical description to only a few methods.<br> In this work vapour pressure isotope effects on evaporation from various organic solvents (ethanol, bromobenzene, dibromomethane, and trichloromethane) in the pure phase are estimated by combining force field or self-consistent charge density-functional tight-binding (SCC-DFTB) atomistic simulations with path integral principle. Furthermore, the recently developed Suzuki-Chin path integral is tested. In general, isotope effects are predicted qualitatively for most of the cases, however, the distinction between position-specific isotope effects observed for ethanol was only reproduced by SCC-DFTB, which indicates the importance of using non-harmonic bond approximations.<br> Energy decomposition analysis performed using the symmetry-adapted perturbation theory (SAPT) revealed sometimes quite substantial differences in interaction energy depending on whether the studied system was treated classically or quantum mechanically. Those observed differences might be the source of different magnitudes of isotope effects predicted using these two different levels of theory which is of special importance for the systems governed by non-covalent interactions.</p><br><p></p>


2021 ◽  
Author(s):  
P. Mialane ◽  
C. Mellot-Draznieks ◽  
P. Gairola ◽  
M. Duguet ◽  
Y. Benseghir ◽  
...  

This review provides a thorough overview of composites with molecular catalysts (polyoxometalates, or organometallic or coordination complexes) immobilised into MOFs via non-covalent interactions.


Sign in / Sign up

Export Citation Format

Share Document