scholarly journals Environment-sensitive emission of anionic hydrogen-bonded urea-derivative–acetate-ion complexes and their aggregation-induced emission enhancement

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Masaki Takahashi ◽  
Nozomu Ito ◽  
Naoki Haruta ◽  
Hayato Ninagawa ◽  
Kohei Yazaki ◽  
...  

AbstractAnions often quench fluorescence (FL). However, strong ionic hydrogen bonding between fluorescent dyes and anion molecules has the potential to control the electronic state of FL dyes, creating new functions via non-covalent interactions. Here, we propose an approach, utilising ionic hydrogen bonding between urea groups and anions, to control the electronic states of fluorophores and develop an aggregation-induced emission enhancement (AIEE) system. The AIEE ionic hydrogen-bonded complex (IHBC) formed between 1,8-diphenylnaphthalene (p-2Urea), with aryl urea groups at the para-positions on the peri-phenyl rings, and acetate ions exhibits high environmental sensitivities in solution phases, and the FL quantum yield (QY) in ion-pair assemblies of the IHBC and tetrabutylammonium cations is more than five times higher than that of the IHBC in solution. Our versatile and simple approach for the design of AIEE dye facilitates the future development of environment-sensitive probes and solid-state emitting materials.

2020 ◽  
Author(s):  
Masaki Takahashi ◽  
Nozomu Ito ◽  
Hayato Ninagawa ◽  
Kohei Yazaki ◽  
Yoshihisa Sei ◽  
...  

Abstract Anions often quench fluorescence (FL). However, strong ionic hydrogen bonding between fluorescent dyes and anion molecules has the potential to control the electronic state of FL dyes, creating new functions via non-covalent interactions. Here, we propose a novel approach, utilising ionic hydrogen bonding between urea groups and anions, to control the electronic states of fluorophores and develop an aggregation-induced emission enhancement (AIEE) system. The AIEE ionic hydrogen-bonded complex (IHBC) formed between 1,8-diphenylnaphthalene (p-2urea), with aryl urea groups at the para-positions on the peri-phenyl rings, and acetate ions exhibits a remarkably high sensitivity to fluid viscosity compared with most conventional viscosity-sensitive dyes, and the FL quantum yield (QY) in ion-pair assemblies of the IHBC and tetrabutylammonium cations is more than five times higher than that of the IHBC in solution. Our versatile and simple approach for the design of AIEE dye facilitates the future development of viscosity probes and solid-state emitting materials.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1094
Author(s):  
Songhua Chen ◽  
Yongqi Liu ◽  
Meiyun He ◽  
Jianhua Huang

An electron-donating−accepting (D−A) molecule, namely, 4-(1-(4-(9H-carbazol-9-yl)phenyl)-1H-1,2,3-triazol-4-yl)benzo[c][1,2,5]thiadiazole (BT-SCC) containing carbazole as the donor moiety and benzothiadiazole as the acceptor moiety is prepared. Single-crystal X-ray structure analysis elucidated the multiple intermolecular interactions, such as hydrogen bonds, CH…π, and π…π interplays. Interestingly, the aggregation-induced emission phenomenon is observed for BT-SCC featured with enhanced fluorescent quantum yield from diluted solution of CH2Cl2 (Φ = ca. 0.1) to CH2Cl2/hexane mixed solutions or solid states (Φ = ca. 0.8). Finally, aggregates of BT-SCC are obtained through precipitating from hot and saturated solutions or solvent-vapor methods and the aggregating morphologies could be easily controlled through different preparation methods. Fabulous cube-like micro-crystals and nanospherical structures are obtained, which is established by the synergistic effects of the multiple non-covalent interactions, endowing potential utility in the field of optoelectronic devices.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2858
Author(s):  
Goar Sánchez

Non-covalent interactions have attracted the scientific attention during last decades as observed by the numerous studies in the literature [...]


2016 ◽  
Vol 14 (40) ◽  
pp. 9588-9597 ◽  
Author(s):  
Yunsheng Xue ◽  
Yuhui Wang ◽  
Zhongyan Cao ◽  
Jian Zhou ◽  
Zhao-Xu Chen

DFT calculations reveal the viability of the two possible ion pair-hydrogen bonding and Brønsted acid-hydrogen bonding dual activation modes.


2015 ◽  
Vol 6 (5) ◽  
pp. 721-731 ◽  
Author(s):  
Fei Li ◽  
Kevin G. Yager ◽  
Noel M. Dawson ◽  
Ying-Bing Jiang ◽  
Kevin J. Malloy ◽  
...  

Core–shell P3HT/fullerene composite nanofibers were obtained using supramolecular chemistry involving cooperative orthogonal non-covalent interactions.


Sign in / Sign up

Export Citation Format

Share Document