scholarly journals Adaptive Fuzzy Sliding Mode Control of Omnidirectional Mobile Robots with Prescribed Performance

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2211
Author(s):  
Jeng-Tze Huang ◽  
Chun-Kai Chiu

Adaptive fuzzy sliding-mode control design for omnidirectional mobile robots with prescribed performance is presented in this work. First, an error transformation which transforms the constrained variable into an unconstrained one is carried out. Next, a fuzzy logic system (FLS) for approximating the unknown dynamics is constructed. Based on such a model, a nominal adaptive linearizing controller incorporating a serial-parallel model (SPM)-based composite algorithm, which improves the tracking performance of the overall closed-loop system, is synthesized. To solve the so-called “loss of controllability” problem, a smooth-switching algorithm is embedded which hands over the control authority to an auxiliary sliding-mode controller until the danger is safely bypassed. The proposed design ensures the semi-globally uniformly ultimately bounded stability of the closed-loop signals. Simulation works demonstrating the validity of the proposed design are presented in the final.

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Guo Haigang ◽  
Li Hongxing ◽  
Zhao Weijing ◽  
Song Zhankui

Combining adaptive fuzzy sliding mode control with fuzzy or variable universe fuzzy switching technique, this study develops two novel direct adaptive schemes for a class of MIMO nonlinear systems with uncertainties and external disturbances. The proposed control schemes consist of fuzzy equivalent control terms, fuzzy switching control terms (in scheme one) or variable universe fuzzy switching control terms (in scheme two), and compensation control terms. The compensation control terms are used to relax the assumption on fuzzy approximation error. Based on Lyapunov stability theory, the parameters update laws are adaptively tuned online and the global asymptotic stability of the closed-loop system can be guaranteed. The major contribution of this study is to develop a novel framework for designing direct adaptive fuzzy sliding mode control scheme facing model uncertainties and external disturbances. The derived schemes can effectively solve the chattering problem and the equivalent control calculation in that environment. Simulation results performed on a two-link robotic manipulator demonstrate the feasibility of the proposed control schemes.


Sign in / Sign up

Export Citation Format

Share Document