scholarly journals Spectroscopy and Remote Sensing Techniques to Assess Active- and Post-Fire Effects

Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 78
Author(s):  
Anna Brook

Fires were once a natural phenomenon that helped to shape species distribution, contributed to the persistence of fire-dependent species, and assisted the natural evolution of ecosystems. However, nowadays, most of the forest fires worldwide are not of natural causes. Therefore, wildfires have received significant attention over the past few decades. Major ecological and policy changes were stimulated by historical frequency, extent, and severity of fires in the dry forests. These fires are important at both local to regional scales, as it might change the maintenance of landscape structure, composition, and function. Moreover, it affects pollutants, impacts air quality and raises human health risks. Many studies suggested using remote sensing data and techniques to assess fire characteristics and post-fire effects. Due to its ability to quantify patterns of variation in space and time, the remote sensing data are especially important to detect active fire extents at local and regional scales, mapping fuel loading and identify areas with long or problematic natural recovery. In the past few decades, the advantages of multi-temporal remote sensing techniques to monitor landscape change in a rapid and cost-effective manner, are reported in the scientific literature. Many studies focused on the development of techniques to evaluate and quantify fire behavior and fuel combustion. Yet the main contribution is recorded for spectral indices, e.g. the Normalized Burn Ratio (NBR), the difference in the Normalized Burn Ratio between pre- and post-fire images (dNBR), and the Normalized Difference Vegetation Index (NDVI), which are calculated by a simple combinations of different sensor bands, rely on spectral changes of the burning or burned surfaces. Numerous papers are focused on more advanced and very detailed spectral models of fuel and post-fire ash residues, mainly using laboratory spectrometers, e.g., Fourier Transform Infrared (FTIR). However, many of the developed models are not applicable in the real world. In the current talk, we will present the most recent studies and scientific activities in the field of (1) active fire detection and characterization, using mainly hyperspectral ground and airborne technologies; (2) future space-borne applications on board of nano- and micro-satellites; (3) discuss the contribution of detailed and precise spectral models for post-fire ecological effects studies; (4) describe field assessment; (5) discuss management applications and future directions of fire-related remote sensing research.

2006 ◽  
Vol 15 (3) ◽  
pp. 319 ◽  
Author(s):  
Leigh B. Lentile ◽  
Zachary A. Holden ◽  
Alistair M. S. Smith ◽  
Michael J. Falkowski ◽  
Andrew T. Hudak ◽  
...  

Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous remote sensing products for fire management. The objective of the present paper is to provide a comprehensive review of current and potential remote sensing methods used to assess fire behavior and effects and ecological responses to fire. We clarify the terminology to facilitate development and interpretation of comprehensible and defensible remote sensing products, present the potential and limitations of a variety of approaches for remotely measuring active fires and their post-fire ecological effects, and discuss challenges and future directions of fire-related remote sensing research.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 417 ◽  
Author(s):  
Mohamed Abdelkareem ◽  
Fathy Abdalla ◽  
Samar Y. Mohamed ◽  
Farouk El-Baz

At present, the Arabian Peninsula is one of the driest regions on Earth; however, this area experienced heavy rainfall in the past thousand years. During this period, catchments received substantial amounts of surface water and sustained vast networks of streams and paleolakes, which are currently inactive. The Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar (PALSAR) data reveal paleohydrologic features buried under shallow aeolian deposits in many areas of the ad-Dawasir, Sahba, Rimah/Batin, and as-Sirhan wadis. Optical remote-sensing data support that the middle of the trans-peninsula Wadi Rimah/Batin, which extends for ~1200 km from the Arabian Shield to Kuwait and covers ~200,000 km2, is dammed by linear sand dunes formed by changes in climate conditions. Integrating Landsat 8 Operational Land Imager (OLI), Geo-Eye, Shuttle Radar Topography Mission (SRTM) digital elevation model, and ALOS/PALSAR data allowed for the characterization of paleodrainage reversals and diversions shaped by structural and volcanic activity. Evidence of streams abruptly shifting from one catchment to another is preserved in Wadi ad-Dawasir along the fault trace. Volcanic activity in the past few thousand years in northern Saudi Arabia has also changed the slope of the land and reversed drainage systems. Relics of earlier drainage directions are well maintained as paleoslopes and wide upstream patterns. This study found that paleohydrologic activity in Saudi Arabia is impacted by changes in climate and by structural and volcanic activity, resulting in changes to stream direction and activity. Overall, the integration of radar and optical remote-sensing data is significant for deciphering past hydrologic activity and for predicting potential water resource areas.


2015 ◽  
Vol 6 (4) ◽  
pp. 330-347 ◽  
Author(s):  
Qingke Wen ◽  
Zengxiang Zhang ◽  
Xiaoli Zhao ◽  
Ling Yi ◽  
Xiao Wang ◽  
...  

Author(s):  
Igor Klein ◽  
Andreas J. Dietz ◽  
Ursula Gessner ◽  
Anastassiya Galayeva ◽  
Akhan Myrzakhmetov ◽  
...  

2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Andrey Medvedev ◽  
Natalia Alekseenko ◽  
Natalia Telnova ◽  
Alexander Koshkarev

<p><strong>Abstract.</strong> Assessment and monitoring of environmental features based on large-scale and ultra-high resolution data, including remote sensing data, which have advantages in the repeatability of information and the speed of processing of incoming data, often face issues of completeness and duration of time series in retrospective analysis. Cartographic materials and remote sensing data allow monitoring for rapidly changing natural and anthropogenic features in the study areas, but very often face a problem when an event or phenomenon occurred many years ago and it is necessary to make a complete chronology.</p><p>Ultra-high-resolution data, remote sensing data and the results of the subsequent geoinformation analysis are widely used to solve problems in a number of socio-economic areas of territorial development, in particular:</p><ul><li>in environmental studies &amp;ndash; identification of local sources of water pollution, the consequences of their impact onecosystems, synthetic assessment of the ecological state of the territories and their comfort;</li><li>in the management of various resources, including water &amp;ndash; determination of biological productivity of water bodies, identification of water bioresources, detection of anthropogenically provoked and natural changes in water mass,implementation for glaciological studies, etc.</li></ul><p>Within the framework of the current study, a multi-time analysis of the water area and the coastal strip of Lake Sevan (the Republic of Armenia) at an altitude of about 1900 m above sea level, was carried out. The lake has repeatedly beensubjected to changes in the water level of the reservoir in the past. The 1930s and in the period between 1949 to 1962 were noted by the most intense drop in water level (more than 10 meters). In the 1990s, there was a slight increase inthe level, and then until 2001, the level of the lake continued to decrease.</p><p>The main factors affecting aquatic ecosystems and the overall ecological status of the lake are:</p><ol><li>Repeated changes in the water level of the reservoir in the past and its expected fluctuations in the future.</li><li>The uncontrolled discharge of harmful substances caused great damage to the lake, which affected the water qualityand biodiversity of this unique natural site.</li><li>Untimely cleaning of flooded forests, which increases the risk of eutrophication of the lake.</li><li>The poorly organized system of waste disposal and unauthorized landfills of municipal solid waste, as well as animalwaste.</li><li>Unauthorized construction of recreational facilities and capital structures in the coastal and water protection zonewhich may be flooded.</li></ol><p> The information support of the study is based on the materials of satellite imagery from the worldview2, SPOT 5/6,Resurs-P, Canopus-B, materials from the international space station (ISS), materials of archival aerial photography anddata obtained from the UAVs, in combination with other map data sources in the range of scales 1&amp;thinsp;:&amp;thinsp;5&amp;thinsp;000 &amp;ndash; 1&amp;thinsp;:&amp;thinsp;100&amp;thinsp;000,including digital topographic maps, land use maps, statistical and literary data. In fact, cartographic materials andremote sensing data provide a time history of 75 years, from large-scale topographic maps of 1942&amp;ndash;1943 to highlydetailed images of 2017&amp;ndash;2018.</p><p>According to the results of the study, it was possible to establish the position of the coastline for different time periods.The period between 1949 and 1962, when there was the most critical drop in the water level, was especially interestingand had not been studied before. Archival aerial photographs for 1943 and 1963 allowed to reconstruct the position ofthe coastline for almost every year of irrational water use.</p>


Sign in / Sign up

Export Citation Format

Share Document