scholarly journals Resource Theories of Nonclassical Light

2019 ◽  
Vol 1 (2) ◽  
pp. 151-161 ◽  
Author(s):  
Kok Chuan Tan ◽  
Hyunseok Jeong

In this focused review we survey recent progress in the development of resource theories of nonclassical light. We introduce the resource theoretical approach, in particular how it pertains to bosonic/light fields, and discuss several different formulations of resource theories of nonclassical light.

2015 ◽  
Vol 91 (1) ◽  
Author(s):  
P. Grünwald ◽  
D. Vasylyev ◽  
J. Häggblad ◽  
W. Vogel

2017 ◽  
Vol 5 (17) ◽  
pp. 4111-4122 ◽  
Author(s):  
Ming Li ◽  
Yang Li ◽  
Hui Zhang ◽  
Shiwei Wang ◽  
Yuhui Ao ◽  
...  

In this Review, we present the recent progress of getting the ordered alignment of chromophores for enhanced bulk second-order optical nonlinearity, which include supramolecular interaction, light fields, electric fields and so on.


Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Author(s):  
Dawn A. Bonnell ◽  
Yong Liang

Recent progress in the application of scanning tunneling microscopy (STM) and tunneling spectroscopy (STS) to oxide surfaces has allowed issues of image formation mechanism and spatial resolution limitations to be addressed. As the STM analyses of oxide surfaces continues, it is becoming clear that the geometric and electronic structures of these surfaces are intrinsically complex. Since STM requires conductivity, the oxides in question are transition metal oxides that accommodate aliovalent dopants or nonstoichiometry to produce mobile carriers. To date, considerable effort has been directed toward probing the structures and reactivities of ZnO polar and nonpolar surfaces, TiO2 (110) and (001) surfaces and the SrTiO3 (001) surface, with a view towards integrating these results with the vast amount of previous surface analysis (LEED and photoemission) to build a more complete understanding of these surfaces. However, the spatial localization of the STM/STS provides a level of detail that leads to conclusions somewhat different from those made earlier.


Sign in / Sign up

Export Citation Format

Share Document