scholarly journals Development of a Regional Lidar-Derived Above-Ground Biomass Model with Bayesian Model Averaging for Use in Ponderosa Pine and Mixed Conifer Forests in Arizona and New Mexico, USA

2018 ◽  
Vol 10 (3) ◽  
pp. 442 ◽  
Author(s):  
Karis Tenneson ◽  
Matthew Patterson ◽  
Thomas Mellin ◽  
Mark Nigrelli ◽  
Peter Joria ◽  
...  
Author(s):  
Karis Tenneson ◽  
Matthew S. Patterson ◽  
Thomas Mellin ◽  
Mark Nigrelli ◽  
Peter Joria ◽  
...  

Historical forest management practices in the southwestern US have left forests prone to high intensity, stand-replacement fires. Effective management to reduce the cost and impact of forest-fire management and allow fires to burn freely without negative impact depends on detailed knowledge of stand composition, in particular, above-ground biomass (AGB). Lidar-based modeling techniques provide opportunities to reduce costs and increase ability of managers to monitor AGB and other forest metrics. Using Bayesian Model Averaging (BMA), we develop a regionally applicable lidar-based statistical model for Ponderosa pine and mixed conifer forest systems of the southwestern USA, using previously collected field data. The selected regional model includes a mid and low canopy height metric, a canopy cover, and height distribution term. It explains 72% of the variability in field estimates of AGB, and the RMSE of the two independent validation data sets are 23.25 and 32.82 Mg/ha. The regional model developed is structured in accordance with previously described models fit to local data, and performs equivalently to models designed for smaller scale application. Developing regional models for broad scale application provides a cost-effective, robust approach for managers to monitor and plan adaptively at the landscape scale.


2015 ◽  
Vol 24 (4) ◽  
pp. 495 ◽  
Author(s):  
Anna M. Higgins ◽  
Kristen M. Waring ◽  
Andrea E. Thode

Over a century of fire exclusion in frequent-fire ponderosa pine and dry mixed conifer forests has resulted in increased tree densities, heavy surface fuel accumulations and an increase in late successional, fire-intolerant trees. Grand Canyon National Park uses prescribed fires and wildfires to reduce fire hazard and restore ecosystem processes. Research is needed to determine post-fire vegetation response thus enabling future forest succession predictions. Our study focussed on the effects of burn entry and burn severity on species composition and regeneration in two forest types: ponderosa pine with white fir encroachment and dry mixed conifer. We found no difference in tree composition and structure in a single, low-severity burn compared with unburned areas in the white fir encroachment forest type. We found no white fir seedlings or saplings in a second-entry, low-severity burn in the white fir encroachment forest type. Second-entry burns were effective in reducing white fir densities in the white fir encroachment forest type. There was significant aspen regeneration following high-severity fire in the dry mixed conifer forest type. This research suggests that repeated entries and an increase in burn severity may be necessary for prescribed fire or wildfire to be effective in meeting management objectives.


PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0147688 ◽  
Author(s):  
Jens T. Stevens ◽  
Hugh D. Safford ◽  
Malcolm P. North ◽  
Jeremy S. Fried ◽  
Andrew N. Gray ◽  
...  

2011 ◽  
Vol 20 (1) ◽  
pp. 125 ◽  
Author(s):  
Sara E. Jenkins ◽  
Carolyn Hull Sieg ◽  
Diana E. Anderson ◽  
Darrell S. Kaufman ◽  
Philip A. Pearthree

Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area. Radiocarbon ages indicate that stand-replacing fire has been an important phenomenon in late Holocene ponderosa pine (Pinus ponderosa) and ponderosa pine–mixed conifer forests on steep slopes. Fires have occurred on centennial scales during this period, although temporal hiatuses between recorded fires vary widely and appear to have decreased during the past 2000 years. Steep slopes and complex terrain may be responsible for localised crown fire behaviour through preheating by vertical fuel arrangement and accumulation of excessive fuels. Holocene wildfire-induced debris flow events occurred without a clear relationship to regional climatic shifts (decadal to millennial), suggesting that interannual moisture variability may determine fire year. Fire-debris flow sequences are recorded when (1) sufficient time has passed (centuries) to accumulate fuels; and (2) stored sediment is available to support debris flows. The frequency of reconstructed debris flows should be considered a minimum for severe events in the study area, as fuel production may outpace sediment storage.


Sign in / Sign up

Export Citation Format

Share Document