scholarly journals Long-Term Satellite Monitoring of the Slumgullion Landslide Using Space-Borne Synthetic Aperture Radar Sub-Pixel Offset Tracking

2019 ◽  
Vol 11 (3) ◽  
pp. 369 ◽  
Author(s):  
Donato Amitrano ◽  
Raffaella Guida ◽  
Domenico Dell’Aglio ◽  
Gerardo Di Martino ◽  
Diego Di Martire ◽  
...  

Kinematic characterization of a landslide at large, small, and detailed scale is today still rare and challenging, especially for long periods, due to the difficulty in implementing demanding ground surveys with adequate spatiotemporal coverage. In this work, the suitability of space-borne synthetic aperture radar sub-pixel offset tracking for the long-term monitoring of the Slumgullion landslide in Colorado (US) is investigated. This landslide is classified as a debris slide and has so far been monitored through ground surveys and, more recently, airborne remote sensing, while satellite images are scarcely exploited. The peculiarity of this landslide is that it is subject to displacements of several meters per year. Therefore, it cannot be monitored with traditional synthetic aperture radar differential interferometry, as this technique has limitations related to the loss of interferometric coherence and to the maximum observable displacement gradient/rate. In order to overcome these limitations, space-borne synthetic aperture radar sub-pixel offset tracking is applied to pairs of images acquired with a time span of one year between August 2011 and August 2013. The obtained results are compared with those available in the literature, both at landslide scale, retrieved through field surveys, and at point scale, using airborne synthetic aperture radar imaging and GPS. The comparison showed full congruence with the past literature. A consistency check covering the full observation period is also implemented to confirm the reliability of the technique, which results in a cheap and effective methodology for the long-term monitoring of large landslide-induced movements.

Mining Scince ◽  
2019 ◽  
Vol 26 ◽  
Author(s):  
Mowen Xie ◽  
Fuxia Lv ◽  
Liwei Wang

Landslides generally cause more damage than first predicted. Currently, many methods are available for monitoring landslides occurrence. Conventional methods are mainly based on single-point monitoring, which omits the aspect of variation in large-scale landslides. Due to the development of radar satellites, the differential interferometric synthetic aperture radar technique has been widely used for landslide monitoring. In this study, an experimental region in the Wudongde Hydropower Station reservoir area was studied using archived spaceborne synthetic aperture radar (SAR) data collected over many years. As the permanent scatterer interferometric SAR (PS-InSAR) technique is an advanced technology, it could be suitably used to overcome the time discontinuity in long time series. However, the accuracy of date processing obtained using the PS-InSAR technique is lower than that obtained using the single-point monitoring method. The monitoring results of the PS-InSAR technique only demonstrate the moving trend of landslides and do not present the actual displacement. The Advanced Land Observation Satellite and a high-precision total station were used for long-term landslide monitoring of the Jinpingzi landslide at the Wudongde Hydropower Station reservoir area. Based on a relationship analysis between the data obtained using the PS-InSAR technique and the total station, a revised method was proposed to reduce the errors in the PS-InSAR monitoring results. The method can not only enhance the monitoring precision of the PS-InSAR technology but also achieve long-term monitoring of landslide displacement from a bird’s-eye view.


2019 ◽  
Vol 30 (15) ◽  
pp. 1785-1801 ◽  
Author(s):  
Zheyuan Du ◽  
Linlin Ge ◽  
Alex Hay‐Man Ng ◽  
Qinggaozi Zhu ◽  
Qi Zhang ◽  
...  

2006 ◽  
Vol 27 (10) ◽  
pp. 1893-1905 ◽  
Author(s):  
L. Noferini ◽  
M. Pieraccini ◽  
D. Mecatti ◽  
G. Macaluso ◽  
G. Luzi ◽  
...  

2019 ◽  
Vol 11 (11) ◽  
pp. 1322 ◽  
Author(s):  
Donato Amitrano ◽  
Raffaella Guida ◽  
Gerardo Di Martino ◽  
Antonio Iodice

The Sentinel-1 mission has now reached its maturity, and is acquiring high-quality images with a high revisit time, allowing for effective continuous monitoring of our rapidly changing planet. The purpose of this work is to assess the performance of the different synthetic aperture radar products made available by the European Space Agency through the Sentinels Data Hub against glacier displacement monitoring with offset tracking methodology. In particular, four classes of products have been tested: the medium resolution ground range detected, the high-resolution ground range detected, acquired in both interferometric wide and extra-wide swath, and the single look complex. The first are detected pre-processed images with about 40, 25, and 10-m pixel spacing, respectively. The last category, the most commonly adopted for the application at issue, represents the standard coherent synthetic aperture radar product, delivered in unprocessed focused complex format with pixel spacing ranging from 14 to 20 m in azimuth and from approximately 2 to 6 m in range, depending on the acquisition area and mode. Tests have been performed on data acquired over four glaciers, i.e., the Petermann Glacier, the Nioghalvfjerdsfjorden, the Jackobshavn Isbræ and the Thwaites Glacier. They revealed that the displacements estimated using interferometric wide swath single look complex and high-resolution ground range detected products are fully comparable, even at computational level. As a result, considering the differences in memory consumption and pre-processing requirements presented by these two kinds of product, detected formats should be preferred for facing the application.


2019 ◽  
Vol 13 (11) ◽  
pp. 2953-2975 ◽  
Author(s):  
Christoph Rohner ◽  
David Small ◽  
Jan Beutel ◽  
Daniel Henke ◽  
Martin P. Lüthi ◽  
...  

Abstract. Following the general warming trend in Greenland, an increase in calving rates, retreat and ice flow has been observed at ocean-terminating outlet glaciers. These changes contribute substantially to the current mass loss of the Greenland Ice Sheet. In order to constrain models of ice dynamics as well as estimates of mass change, detailed knowledge of geometry and ice flow is needed, in particular on the rapidly changing tongues of ocean-terminating outlet glaciers. In this study, we validate velocity estimates and spatial patterns close to the calving terminus of such an outlet derived from an iterative offset-tracking method based on synthetic aperture radar (SAR) intensity data with a collection of three independent reference measurements of glacier flow. These reference datasets are comprised of measurements from differential GPS, a terrestrial radar interferometer (TRI) and repeated unmanned aerial vehicle (UAV) surveys. Our approach to SAR velocity processing aims at achieving a relatively fine grid spacing and a high temporal resolution in order to best resolve the steep velocity gradients in the terminus area and aims to exploit the 12 d repeat interval of the single-satellite Sentinel-1A sensor. Results from images of the medium-sized ocean-terminating outlet glacier Eqip Sermia acquired by Sentinel-1A and RADARSAT-2 exhibit a mean difference of 11.5 % when compared to the corresponding GPS measurements. An areal comparison of our SAR velocity fields with independently generated velocity maps from TRI and UAV surveys showed good agreement in magnitude and spatial patterns, with mean differences smaller than 0.7 m d−1. In comparison with existing operational velocity products, our SAR-derived velocities show an improved spatial velocity pattern near the margins and calving front. There 8 % to 30 % higher surface ice velocities are produced, which has implications on ice fluxes and on mass budget estimates of similarly sized outlet glaciers. Further, we show that offset tracking from SAR intensity data at relatively low spatio-temporal sampling intervals is a valid method to derive glacier flow fields for fast-flowing glacier termini of outlet glaciers and, given the repeat period of 12 d of the Sentinel-1A sensor (6 d with Sentinel-1B), has the potential to be applied operationally in a quasi-continuous mode.


Sign in / Sign up

Export Citation Format

Share Document