scholarly journals A Spectral-Spatial Cascaded 3D Convolutional Neural Network with a Convolutional Long Short-Term Memory Network for Hyperspectral Image Classification

2019 ◽  
Vol 11 (20) ◽  
pp. 2363 ◽  
Author(s):  
Wenchao Qi ◽  
Xia Zhang ◽  
Nan Wang ◽  
Mao Zhang ◽  
Yi Cen

Deep learning methods used for hyperspectral image (HSI) classification often achieve greater accuracy than traditional algorithms but require large numbers of training epochs. To simplify model structures and reduce their training epochs, an end-to-end deep learning framework incorporating a spectral-spatial cascaded 3D convolutional neural network (CNN) with a convolutional long short-term memory (CLSTM) network, called SSCC, is proposed herein for HSI classification. The SSCC framework employs cascaded 3D CNN to learn the spectral-spatial features of HSIs and uses the CLSTM network to extract sequence features. Residual connections are used in SSCC to accelerate model convergence, with the outputs of previous convolutional layers concatenated as inputs for subsequent layers. Moreover, the data augmentation, parametric rectified linear unit, dynamic learning rate, batch normalization, and regularization (including dropout and L2) methods are used to increase classification accuracy and prevent overfitting. These attributes allow the SSCC framework to achieve good performance for HSI classification within 20 epochs. Three well-known datasets including Indiana Pines, University of Pavia, and Pavia Center were employed to evaluate the classification performance of the proposed algorithm. The GF-5 dataset of Anxin County, obtained from China’s recently launched spaceborne Advanced Hyperspectral Imager, was also used for classification experiments. The experimental results demonstrate that the proposed SSCC framework achieves state-of-the-art performance with better training efficiency than other deep learning methods.

2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hangxia Zhou ◽  
Qian Liu ◽  
Ke Yan ◽  
Yang Du

Short-term photovoltaic (PV) energy generation forecasting models are important, stabilizing the power integration between the PV and the smart grid for artificial intelligence- (AI-) driven internet of things (IoT) modeling of smart cities. With the recent development of AI and IoT technologies, it is possible for deep learning techniques to achieve more accurate energy generation forecasting results for the PV systems. Difficulties exist for the traditional PV energy generation forecasting method considering external feature variables, such as the seasonality. In this study, we propose a hybrid deep learning method that combines the clustering techniques, convolutional neural network (CNN), long short-term memory (LSTM), and attention mechanism with the wireless sensor network to overcome the existing difficulties of the PV energy generation forecasting problem. The overall proposed method is divided into three stages, namely, clustering, training, and forecasting. In the clustering stage, correlation analysis and self-organizing mapping are employed to select the highest relevant factors in historical data. In the training stage, a convolutional neural network, long short-term memory neural network, and attention mechanism are combined to construct a hybrid deep learning model to perform the forecasting task. In the testing stage, the most appropriate training model is selected based on the month of the testing data. The experimental results showed significantly higher prediction accuracy rates for all time intervals compared to existing methods, including traditional artificial neural networks, long short-term memory neural networks, and an algorithm combining long short-term memory neural network and attention mechanism.


Author(s):  
Halima Bousqaoui ◽  
Ilham Slimani ◽  
Said Achchab

The forecasting consists of taking historical data as inputs then using them to predict future observations, thus determining future trends. Demand prediction is a crucial component in the supply chain’s process that allows each member to enhance its performance and its profit. Nevertheless, because of demand uncertainty supply chains usually suffer from many problems such as the bullwhip effect. As a solution to those logistics issues, this paper presents a comparative analysis of four time series demand forecasting models; namely, the autoregressive integrated moving Average (ARIMA) a statistical model, the multi-layer perceptron (MLP) a feedforward neural network, the long short-term memory model (LSTM) a recurrent neural network and the convolutional neural network (CNN or ConvNet) a deep learning model. The experimentations are carried out using a real-life dataset provided by a supermarket in Morocco. The results clearly show that the convolutional neural network gives slightly better forecasting results than the Long short-term memory network.


Sign in / Sign up

Export Citation Format

Share Document