scholarly journals Correction: Miraglio, T., et al. Monitoring LAI, Chlorophylls, and Carotenoids Content of a Woodland Savanna Using Hyperspectral Imagery and 3D Radiative Transfer Modeling. Remote Sensing 2020, 12, 28

2020 ◽  
Vol 12 (14) ◽  
pp. 2263
Author(s):  
Thomas Miraglio ◽  
Karine Adeline ◽  
Margarita Huesca ◽  
Susan Ustin ◽  
Xavier Briottet

The authors are sorry to report that some of the validation data used in their recently published paper [...]

2002 ◽  
Vol 36 (1) ◽  
pp. 4-13 ◽  
Author(s):  
Hiroya Yamano ◽  
Masayuki Tamura ◽  
Yoshimitsu Kunii ◽  
Michio Hidaka

Recent advances in the remote sensing of coral reefs include hyperspectral remote sensing and radiative transfer modeling. Hyperspectral data can be regarded as continuous and the derivative spectroscopy is effective for extracting coral reef components, including sand, macroalgae, and healthy, bleached, recently dead, and old dead coral. Radiative transfer models are effective for feasibility studies of satellite or airborne remote sensing. Using these techniques, we simulate and analyze the apparent reflectance of coral reef benthic features associated with bleaching events, obtained by hyperspectral sensors on various platforms (ROV, boat, airplane, and satellite), and suggest that the coral reef health on reef flats can be discriminated precisely. Remote sensing using hyperspectral sensors should significantly contribute to mapping and monitoring coral reef health.


2004 ◽  
Vol 21 (11) ◽  
pp. 1734-1746 ◽  
Author(s):  
Christopher J. Merchant ◽  
Pierre Le Borgne

Abstract The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (BTs). Typically, an estimate of SST is formed from a weighted combination of BTs at a few wavelengths, plus an offset. This paper addresses two questions about the radiative transfer modeling approach to deriving these weighting and offset coefficients. How precisely specified do the coefficients need to be in order to obtain the required SST accuracy (e.g., scatter <0.3 K in week-average SST, bias <0.1 K)? And how precisely is it actually possible to specify them using current forward models? The conclusions are that weighting coefficients can be obtained with adequate precision, while the offset coefficient will often require an empirical adjustment of the order of a few tenths of a kelvin against validation data. Thus, a rational approach to defining retrieval coefficients is one of radiative transfer modeling followed by offset adjustment. The need for this approach is illustrated from experience in defining SST retrieval schemes for operational meteorological satellites. A strategy is described for obtaining the required offset adjustment, and the paper highlights some of the subtler aspects involved with reference to the example of SST retrievals from the imager on the geostationary satellite GOES-8.


2000 ◽  
Author(s):  
Gail P. Anderson ◽  
Alexander Berk ◽  
Prabhat K. Acharya ◽  
Michael W. Matthew ◽  
Lawrence S. Bernstein ◽  
...  

10.5772/63887 ◽  
2016 ◽  
Author(s):  
Lucas Landier ◽  
Nicolas Lauret ◽  
Tiangang Yin ◽  
Ahmad Al Bitar ◽  
JeanPhilippe Gastellu-Etchegorry ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 28 ◽  
Author(s):  
Thomas Miraglio ◽  
Karine Adeline ◽  
Margarita Huesca ◽  
Susan Ustin ◽  
Xavier Briottet

Leaf pigment contents, such as chlorophylls a and b content (C a b ) or carotenoid content (Car), and the leaf area index (LAI) are recognized indicators of plants’ and forests’ health status that can be estimated through hyperspectral imagery. Their measurement on a seasonal and yearly basis is critical to monitor plant response and adaptation to stress, such as droughts. While extensively done over dense canopies, estimation of these variables over tree-grass ecosystems with very low overstory LAI (mean site LAI < 1 m 2 /m 2 ), such as woodland savannas, is lacking. We investigated the use of look-up table (LUT)-based inversion of a radiative transfer model to retrieve LAI and leaf C a b and Car from AVIRIS images at an 18 m spatial resolution at multiple dates over a broadleaved woodland savanna during the California drought. We compared the performances of different cost functions in the inversion step. We demonstrated the spatial consistency of our LAI, C a b , and Car estimations using validation data from low and high canopy cover parts of the site, and their temporal consistency by qualitatively confronting their variations over two years with those that would be expected. We concluded that LUT-based inversions of medium-resolution hyperspectral images, achieved with a simple geometric representation of the canopy within a 3D radiative transfer model (RTM), are a valid means of monitoring woodland savannas and more generally sparse forests, although for maximum applicability, the inversion cost functions should be selected using validation data from multiple dates. Validation revealed that for monitoring use: The normalized difference vegetation index (NDVI) outperformed other indices for LAI estimations (root mean square error (RMSE) = 0.22 m 2 /m 2 , R 2 = 0.81); the band ratio ρ 0.750 μ m ρ 0.550 μ m retrieved C a b more accurately than other chlorophylls indices (RMSE = 5.21 μ g/cm 2 , R 2 = 0.73); RMSE over the 0.5–0.55 μ m interval showed encouraging results for Car estimations.


1999 ◽  
Author(s):  
Gail P. Anderson ◽  
Alexander Berk ◽  
Prabhat K. Acharya ◽  
Michael W. Matthew ◽  
Lawrence S. Bernstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document