scholarly journals Photometric Normalization of Chang’e-4 Visible and Near-Infrared Imaging Spectrometer Datasets: A Combined Study of In-Situ and Laboratory Spectral Measurements

2020 ◽  
Vol 12 (19) ◽  
pp. 3211
Author(s):  
Xiaobin Qi ◽  
Zongcheng Ling ◽  
Jiang Zhang ◽  
Jian Chen ◽  
Haijun Cao ◽  
...  

Until 29 May 2020, the Visible and Near-Infrared Imaging Spectrometer (VNIS) onboard the Yutu-2 Rover of the Chang’e-4 (CE-4) has acquired 96 high-resolution surface in-situ imaging spectra. These spectra were acquired under different illumination conditions, thus photometric normalization should be conducted to correct the introduced albedo differences before deriving the quantitative mineralogy for accurate geologic interpretations. In this study, a Lommel–Seeliger (LS) model and Hapke radiative transfer (Hapke) model were used and empirical phase functions of the LS model were derived. The values of these derived phase functions exhibit declining trends with the increase in phase angles and the opposition effect and phase reddening effect were observed. Then, we discovered from in-situ and laboratory measurements that the shadows caused by surface roughness have significant impacts on reflectance spectra and proper corrections were introduced. The validations of different phase functions showed that the maximum discrepancy at 1500 nm of spectra corrected by the LS model was less (~3.7%) than that by the Hapke model (~7.4%). This is the first time that empirical phase functions have been derived for a wavelength from 450 to 2395 nm using in-situ visible and near-infrared spectral datasets. Generally, photometrically normalized spectra exhibit smaller spectral slopes, lower FeO contents and larger optical maturity parameter (OMAT) than spectra without correction. In addition, the band centers of the 1 and 2 μm absorption features of spectra after photometric normalization exhibit a more concentrated distribution, indicating the compositional homogeneity of soils at the CE-4 landing site.

2021 ◽  
Vol 13 (12) ◽  
pp. 2359
Author(s):  
Jiafei Xu ◽  
Meizhu Wang ◽  
Rong Wang ◽  
Qi Feng ◽  
Honglei Lin ◽  
...  

In-situ measurements of the spectral information on the lunar surface are of significance to study the geological evolution of the Moon. China’s Chang’E-4 (CE-4) Yutu-2 rover has conducted several in-situ spectral explorations on the Moon. The visible and near-infrared imaging spectrometer (VNIS) onboard the rover has acquired a series of in-situ spectra of the regolith at the landing site. In general, the mineralogical research of the lunar surface relies on the accuracy of the in-situ data. However, the spectral measurements of the Yutu-2 rover may be affected by shadows and stray illumination. In this study, we analyzed 106 CE-4 VNIS spectra acquired in the first 24 lunar days of the mission and noted that six of these spectra were affected by the shadows of the rover. Therefore, a method was established to correct the effects of the rover shadow on the spectral measurements. After shadow correction, the FeO content in the affected area is corrected to 14.46 wt.%, which was similar to the result calculated in the normal regolith. Furthermore, according to the visible images, certain areas of the explored sites were noted to be unusually bright. Considering the reflectance, geometric information, and shining patterns of the multi-layer insulation (MLI), we examined the influence of the specular reflection of the MLI on the bright spot regionsd , and found that the five sets of data were likely not affected by the specular reflection of the MLI. The results indicated that the complex illumination considerably influences the in situ spectral data. This study can provide a basis to analyze the VNIS scientific data and help enhance the accuracy of interpretation of the composition at CE-4 landing sites.


2012 ◽  
Vol 10 (1) ◽  
pp. 198-204
Author(s):  
Dongyan Zhang ◽  
Guijun Yang ◽  
Xiaoyu Song ◽  
Zhijie Wang ◽  
Dacheng Wang ◽  
...  

2021 ◽  
pp. 130747
Author(s):  
Yanyan Ma ◽  
Yongyuan Liu ◽  
Zike Jiang ◽  
Hongmin Lv ◽  
Jing Wang ◽  
...  

2015 ◽  
pp. 121-139 ◽  
Author(s):  
Jianyu Wang ◽  
Zhiping He ◽  
Rong Shu ◽  
Rui Xu ◽  
Kai Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document