scholarly journals Monitoring Land Surface Temperature Change with Landsat Images during Dry Seasons in Bac Binh, Vietnam

2020 ◽  
Vol 12 (24) ◽  
pp. 4067
Author(s):  
Thanhtung Dang ◽  
Peng Yue ◽  
Felix Bachofer ◽  
Michael Wang ◽  
Mingda Zhang

Global warming-induced climate change evolved to be one of the most important research topics in Earth System Sciences, where remote sensing-based methods have shown great potential for detecting spatial temperature changes. This study utilized a time series of Landsat images to investigate the Land Surface Temperature (LST) of dry seasons between 1989 and 2019 in the Bac Binh district, Binh Thuan province, Vietnam. Our study aims to monitor LST change, and its relationship to land-cover change during the last 30 years. The results for the study area show that the share of Green Vegetation coverage has decreased rapidly for the dry season in recent years. The area covered by vegetation shrank between 1989 and 2019 by 29.44%. Our findings show that the LST increase and decrease trend is clearly related to the change of the main land-cover classes, namely Bare Land and Green Vegetation. For the same period, we find an average increase of absolute mean LST of 0.03 °C per year for over thirty years across all land-cover classes. For the dry season in 2005, the LST was extraordinarily high and the area with a LST exceeding 40 °C covered 64.10% of the total area. We expect that methodological approach and the findings can be applied to study change in LST, land-cover, and can contribute to climate change monitoring and forecasting of impacts in comparable regions.

2019 ◽  
Vol 10 (3) ◽  
pp. 40-49
Author(s):  
Aftab Ahmed Khan ◽  
Syed Najam ul Hassan ◽  
Saranjam Baig ◽  
Muhammad Zafar Khan ◽  
Amin Muhammad

With growing urbanization in mountainous landscapes, the built-up areas dominate other land use classesresulting in increased land surface temperature (LST). Gilgit city in northern Pakistan has witnessed tremendousurban growth in the recent past decades. It is anticipated that this growth will exponentially increase in the nearfuture because of the China-Pakistan Economic Corridor (CPEC) initiatives, as this city happens to be thecommercial hub of the northern region of Pakistan. The objective of present study is to explore the influence ofland use and land cover variations on LST and to evaluate the relationship between LST with normalizeddifference vegetation index (NDVI), normalized difference water index (NDWI), and normalized difference built -up index (NDBI) values. This study is carried out on data from Google earth and three Landsat images (Landsat 5-TM, Landsat 7-ETM, and Landsat OLI_TIRS-8) during the period from 1992, 2004 and 2016. Land use/coverclasses are determined through supervised classification and LST maps are created using the Mono -windowalgorithm. The accuracy assessment of land use/cover classes is carried out comparing Google Earth digitizedvector for the periods of 2004 and 2016 with Landsat classified images. Further, NDVI, NDBI, and NDWI mapsare computed from images for years 1992, 2004, and 2016. The relationships of LST with NDVI, NDBI, andNDWI are computed using Linear Regression analysis. The results reveal that the variations in land use and landcover play a substantial role in LST variability. The maximum temperatures are connected with built -up areas andbarren land, ranging from 48.4°C, 50.7°C, 51.6°C, in 1992, 2004, and 2016, respectively. Inversely, minimumtemperatures are linked to forests and water bodies, ranging from 15.1°C, 16°C, 21.6°C, in 1992, 2004, and 2016respectively. This paper also results that NDBI correlates positively with high temperatures, whereas NDVI andNDWI associate negatively with lesser temperatures. The study will support to policymakers and urban planners tostrategize the initiatives for eco-friendly and climate-resilient urban development in fragile mountainouslandscapes.


Author(s):  
Aftab Ahmed Khan ◽  
Syed Najam ul Hassan ◽  
Saranjam Baig ◽  
Muhammad Zafar Khan ◽  
Amin Muhammad

With growing urbanization in mountainous landscapes, the built-up areas dominate other land use classesresulting in increased land surface temperature (LST). Gilgit city in northern Pakistan has witnessed tremendousurban growth in the recent past decades. It is anticipated that this growth will exponentially increase in the nearfuture because of the China-Pakistan Economic Corridor (CPEC) initiatives, as this city happens to be thecommercial hub of the northern region of Pakistan. The objective of present study is to explore the influence ofland use and land cover variations on LST and to evaluate the relationship between LST with normalizeddifference vegetation index (NDVI), normalized difference water index (NDWI), and normalized difference built -up index (NDBI) values. This study is carried out on data from Google earth and three Landsat images (Landsat 5-TM, Landsat 7-ETM, and Landsat OLI_TIRS-8) during the period from 1992, 2004 and 2016. Land use/coverclasses are determined through supervised classification and LST maps are created using the Mono -windowalgorithm. The accuracy assessment of land use/cover classes is carried out comparing Google Earth digitizedvector for the periods of 2004 and 2016 with Landsat classified images. Further, NDVI, NDBI, and NDWI mapsare computed from images for years 1992, 2004, and 2016. The relationships of LST with NDVI, NDBI, andNDWI are computed using Linear Regression analysis. The results reveal that the variations in land use and landcover play a substantial role in LST variability. The maximum temperatures are connected with built -up areas andbarren land, ranging from 48.4°C, 50.7°C, 51.6°C, in 1992, 2004, and 2016, respectively. Inversely, minimumtemperatures are linked to forests and water bodies, ranging from 15.1°C, 16°C, 21.6°C, in 1992, 2004, and 2016respectively. This paper also results that NDBI correlates positively with high temperatures, whereas NDVI andNDWI associate negatively with lesser temperatures. The study will support to policymakers and urban planners tostrategize the initiatives for eco-friendly and climate-resilient urban development in fragile mountainouslandscapes.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1266
Author(s):  
Teodoro Semeraro ◽  
Riccardo Buccolieri ◽  
Marzia Vergine ◽  
Luigi De Bellis ◽  
Andrea Luvisi ◽  
...  

Agricultural activity replaces natural vegetation with cultivated land and it is a major cause of local and global climate change. Highly specialized agricultural production leads to extensive monoculture farming with a low biodiversity that may cause low landscape resilience. This is the case on the Salento peninsula, in the Apulia Region of Italy, where the Xylella fastidiosa bacterium has caused the mass destruction of olive trees, many of them in monumental groves. The historical land cover that characterized the landscape is currently in a transition phase and can strongly affect climate conditions. This study aims to analyze how the destruction of olive groves by X. fastidiosa affects local climate change. Land surface temperature (LST) data detected by Landsat 8 and MODIS satellites are used as a proxies for microclimate mitigation ecosystem services linked to the evolution of the land cover. Moreover, recurrence quantification analysis was applied to the study of LST evolution. The results showed that olive groves are the least capable forest type for mitigating LST, but they are more capable than farmland, above all in the summer when the air temperature is the highest. The differences in the average LST from 2014 to 2020 between olive groves and farmland ranges from 2.8 °C to 0.8 °C. Furthermore, the recurrence analysis showed that X. fastidiosa was rapidly changing the LST of the olive groves into values to those of farmland, with a difference in LST reduced to less than a third from the time when the bacterium was identified in Apulia six years ago. The change generated by X. fastidiosa started in 2009 and showed more or less constant behavior after 2010 without substantial variation; therefore, this can serve as the index of a static situation, which can indicate non-recovery or non-transformation of the dying olive groves. Failure to restore the initial environmental conditions can be connected with the slow progress of the uprooting and replacing infected plants, probably due to attempts to save the historic aspect of the landscape by looking for solutions that avoid uprooting the diseased plants. This suggests that social-ecological systems have to be more responsive to phytosanitary epidemics and adapt to ecological processes, which cannot always be easily controlled, to produce more resilient landscapes and avoid unwanted transformations.


Sign in / Sign up

Export Citation Format

Share Document