scholarly journals A Public Dataset for Fine-Grained Ship Classification in Optical Remote Sensing Images

2021 ◽  
Vol 13 (4) ◽  
pp. 747
Author(s):  
Yanghua Di ◽  
Zhiguo Jiang ◽  
Haopeng Zhang

Fine-grained visual categorization (FGVC) is an important and challenging problem due to large intra-class differences and small inter-class differences caused by deformation, illumination, angles, etc. Although major advances have been achieved in natural images in the past few years due to the release of popular datasets such as the CUB-200-2011, Stanford Cars and Aircraft datasets, fine-grained ship classification in remote sensing images has been rarely studied because of relative scarcity of publicly available datasets. In this paper, we investigate a large amount of remote sensing image data of sea ships and determine most common 42 categories for fine-grained visual categorization. Based our previous DSCR dataset, a dataset for ship classification in remote sensing images, we collect more remote sensing images containing warships and civilian ships of various scales from Google Earth and other popular remote sensing image datasets including DOTA, HRSC2016, NWPU VHR-10, We call our dataset FGSCR-42, meaning a dataset for Fine-Grained Ship Classification in Remote sensing images with 42 categories. The whole dataset of FGSCR-42 contains 9320 images of most common types of ships. We evaluate popular object classification algorithms and fine-grained visual categorization algorithms to build a benchmark. Our FGSCR-42 dataset is publicly available at our webpages.

Author(s):  
Jingtan Li ◽  
Maolin Xu ◽  
Hongling Xiu

With the resolution of remote sensing images is getting higher and higher, high-resolution remote sensing images are widely used in many areas. Among them, image information extraction is one of the basic applications of remote sensing images. In the face of massive high-resolution remote sensing image data, the traditional method of target recognition is difficult to cope with. Therefore, this paper proposes a remote sensing image extraction based on U-net network. Firstly, the U-net semantic segmentation network is used to train the training set, and the validation set is used to verify the training set at the same time, and finally the test set is used for testing. The experimental results show that U-net can be applied to the extraction of buildings.


2020 ◽  
Vol 12 (9) ◽  
pp. 1501
Author(s):  
Chu He ◽  
Shenglin Li ◽  
Dehui Xiong ◽  
Peizhang Fang ◽  
Mingsheng Liao

Semantic segmentation is an important field for automatic processing of remote sensing image data. Existing algorithms based on Convolution Neural Network (CNN) have made rapid progress, especially the Fully Convolution Network (FCN). However, problems still exist when directly inputting remote sensing images to FCN because the segmentation result of FCN is not fine enough, and it lacks guidance for prior knowledge. To obtain more accurate segmentation results, this paper introduces edge information as prior knowledge into FCN to revise the segmentation results. Specifically, the Edge-FCN network is proposed in this paper, which uses the edge information detected by Holistically Nested Edge Detection (HED) network to correct the FCN segmentation results. The experiment results on ESAR dataset and GID dataset demonstrate the validity of Edge-FCN.


2021 ◽  
Vol 13 (6) ◽  
pp. 1132
Author(s):  
Zhibao Wang ◽  
Lu Bai ◽  
Guangfu Song ◽  
Jie Zhang ◽  
Jinhua Tao ◽  
...  

Estimation of the number and geo-location of oil wells is important for policy holders considering their impact on energy resource planning. With the recent development in optical remote sensing, it is possible to identify oil wells from satellite images. Moreover, the recent advancement in deep learning frameworks for object detection in remote sensing makes it possible to automatically detect oil wells from remote sensing images. In this paper, we collected a dataset named Northeast Petroleum University–Oil Well Object Detection Version 1.0 (NEPU–OWOD V1.0) based on high-resolution remote sensing images from Google Earth Imagery. Our database includes 1192 oil wells in 432 images from Daqing City, which has the largest oilfield in China. In this study, we compared nine different state-of-the-art deep learning models based on algorithms for object detection from optical remote sensing images. Experimental results show that the state-of-the-art deep learning models achieve high precision on our collected dataset, which demonstrate the great potential for oil well detection in remote sensing.


2021 ◽  
Vol 13 (14) ◽  
pp. 2646
Author(s):  
Quanfu Xu ◽  
Keming Chen ◽  
Guangyao Zhou ◽  
Xian Sun

Change detection based on deep learning has made great progress recently, but there are still some challenges, such as the small data size in open-labeled datasets, the different viewpoints in image pairs, and the poor similarity measures in feature pairs. To alleviate these problems, this paper presents a novel change capsule network by taking advantage of a capsule network that can better deal with the different viewpoints and can achieve satisfactory performance with small training data for optical remote sensing image change detection. First, two identical non-shared weight capsule networks are designed to extract the vector-based features of image pairs. Second, the unchanged region reconstruction module is adopted to keep the feature space of the unchanged region more consistent. Third, vector cosine and vector difference are utilized to compare the vector-based features in a capsule network efficiently, which can enlarge the separability between the changed pixels and the unchanged pixels. Finally, a binary change map can be produced by analyzing both the vector cosine and vector difference. From the unchanged region reconstruction module and the vector cosine and vector difference module, the extracted feature pairs in a change capsule network are more comparable and separable. Moreover, to test the effectiveness of the proposed change capsule network in dealing with the different viewpoints in multi-temporal images, we collect a new change detection dataset from a taken-over Al Udeid Air Basee (AUAB) using Google Earth. The results of the experiments carried out on the AUAB dataset show that a change capsule network can better deal with the different viewpoints and can improve the comparability and separability of feature pairs. Furthermore, a comparison of the experimental results carried out on the AUAB dataset and SZTAKI AirChange Benchmark Set demonstrates the effectiveness and superiority of the proposed method.


Author(s):  
Kun Yang ◽  
Anning Pan ◽  
Yang Yang ◽  
Su Zhang ◽  
Sim Heng Ong ◽  
...  

Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i) A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii) Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform) distance which is endowed with the intensity information is used to measure the scale space extrema. (iii) To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV) and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.


2011 ◽  
Vol 271-273 ◽  
pp. 205-210
Author(s):  
Ying Zhao Ma ◽  
Wei Li Jiao ◽  
Wang Wei

Cloud is an important factor affect the quality of optical remote sensing image. How to automatically detect the cloud cover of an image, reduce of useless data transmission, make great significance of higher data rate usefulness. This paper represent a method based on Lansat5 data, which can automatically mark the location of clouds region in each image, and effective calculated for each cloud cover, remove useless remote sensing images.


Sign in / Sign up

Export Citation Format

Share Document