scholarly journals Heap Leach Pad Surface Moisture Monitoring Using Drone-Based Aerial Images and Convolutional Neural Networks: A Case Study at the El Gallo Mine, Mexico

2021 ◽  
Vol 13 (8) ◽  
pp. 1420
Author(s):  
Mingliang Tang ◽  
Kamran Esmaeili

An efficient metal recovery in heap leach operations relies on uniform distribution of leaching reagent solution over the heap leach pad surface. However, the current practices for heap leach pad (HLP) surface moisture monitoring often rely on manual inspection, which is labor-intensive, time-consuming, discontinuous, and intermittent. In order to complement the manual monitoring process and reduce the frequency of exposing technical manpower to the hazardous leaching reagent (e.g., dilute cyanide solution in gold leaching), this manuscript describes a case study of implementing an HLP surface moisture monitoring method based on drone-based aerial images and convolutional neural networks (CNNs). Field data collection was conducted on a gold HLP at the El Gallo mine, Mexico. A commercially available hexa-copter drone was equipped with one visible-light (RGB) camera and one thermal infrared sensor to acquire RGB and thermal images from the HLP surface. The collected data had high spatial and temporal resolutions. The high-quality aerial images were used to generate surface moisture maps of the HLP based on two CNN approaches. The generated maps provide direct visualization of the different moisture zones across the HLP surface, and such information can be used to detect potential operational issues related to distribution of reagent solution and to facilitate timely decision making in heap leach operations.

2018 ◽  
Vol 15 (2) ◽  
pp. 173-177 ◽  
Author(s):  
Kaiqiang Chen ◽  
Kun Fu ◽  
Menglong Yan ◽  
Xin Gao ◽  
Xian Sun ◽  
...  

2019 ◽  
Vol 11 (18) ◽  
pp. 2176 ◽  
Author(s):  
Chen ◽  
Zhong ◽  
Tan

Detecting objects in aerial images is a challenging task due to multiple orientations and relatively small size of the objects. Although many traditional detection models have demonstrated an acceptable performance by using the imagery pyramid and multiple templates in a sliding-window manner, such techniques are inefficient and costly. Recently, convolutional neural networks (CNNs) have successfully been used for object detection, and they have demonstrated considerably superior performance than that of traditional detection methods; however, this success has not been expanded to aerial images. To overcome such problems, we propose a detection model based on two CNNs. One of the CNNs is designed to propose many object-like regions that are generated from the feature maps of multi scales and hierarchies with the orientation information. Based on such a design, the positioning of small size objects becomes more accurate, and the generated regions with orientation information are more suitable for the objects arranged with arbitrary orientations. Furthermore, another CNN is designed for object recognition; it first extracts the features of each generated region and subsequently makes the final decisions. The results of the extensive experiments performed on the vehicle detection in aerial imagery (VEDAI) and overhead imagery research data set (OIRDS) datasets indicate that the proposed model performs well in terms of not only the detection accuracy but also the detection speed.


2019 ◽  
Vol 12 (2) ◽  
pp. 388-397 ◽  
Author(s):  
Alexander N. Gorban ◽  
Evgeny M. Mirkes ◽  
Ivan Y. Tyukin

Sign in / Sign up

Export Citation Format

Share Document