surface moisture
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 75)

H-INDEX

51
(FIVE YEARS 4)

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Hongchao Dun ◽  
Peng Yue ◽  
Ning Huang ◽  
Jie Zhang

The process of aeolian sand transport is an important mechanism leading to the formation and evolution of local landforms in coastal areas and desert lakes. For a long time, the role of surface moisture in incipient motion of sand grains by wind stress has been extensively studied but, in fact, sand-bed collision is the main mechanism in steady aeolian sand flow. At present, the lack of understanding of surface moisture content on sand-bed collision limits the application of aeolian sand transport models in wet coastal areas. In this paper, we adopt numerical simulations to discuss and analyze the effect of cohesive forces formed by surface moisture content on the sand-bed collision process based on discrete element method. High density contact forces appear with the surface moisture increasing, and form a closed structure around the edge of crater to resist the avulsion in horizontal direction. Under high moisture condition, even though the ejected sand grains saltate away from the surface, the tension forces will prevent from leaving. The ejected number trend with incident velocity shows some nonlinear characteristics due to the unequally distributed force chains and liquid bridges in the unsaturated sand bed surface.


Author(s):  
S.G. Kornienko

By the case of the area of a long-term technogenic load of the Bovanenkovo oil and gas condensate field, the possibility of monitoring the moisture content of the tundra cover near technical objects according to the Landsat 5 and Landsat 8 satellites is shown. The work used multispectral images from 1990, 1994, 2013 and 2020. The analysis was carried out on images characterizing the Earth’s surface temperature, surface moisture (NDWI index) and chlorophyll content in the canopy (NDVI index). Characterization and mapping of changes in the moisture content of the cover were carried out according to the difference between the images of 1990 and 2020. Variations in the NDVI index allow us to identify the reasons for these changes. The technogenic impact is shown to lead to an increase in the surface temperature and a decrease in the NDWI and NDVI values, which indicates the predominance of drainage processes and a decrease in the volume of living phytomass near technical objects. Such transformations are less dangerous for objects in comparison with waterlogging of the cover, however, they contribute to an increase in the emission of carbon-containing gases, since an increase in temperature and a decrease in surface moisture, as a rule, lead to degradation of the permafrost and an increase in the depth of the thawed layer.


2021 ◽  
Vol 150 ◽  
pp. 106559
Author(s):  
Gerrit Marius Moelich ◽  
Jacques Kruger ◽  
Riaan Combrinck

2021 ◽  
Vol 1203 (3) ◽  
pp. 032105
Author(s):  
William K. Toledo ◽  
Craig M. Newtson

Abstract Direct tension tests were conducted to investigate the effects of substrate moisture conditions and texture on ultra-high performance concrete (UHPC) overlay bond strengths. Improper substrate surface preparation can result in inadequate bond strengths and, in severe cases, lack of bond. To demonstrate the importance of surface preparation, pull-off tests were performed on overlaid slabs that had two extreme substrate surface moisture conditions (saturated and dried) prior to overlay application. Saturated slabs had a tined, tined-light sand blasted, or tined-medium sand blasted substrate surface texture. Dried slabs had either a tined or an exposed aggregate surface texture. Saturated specimens with tined, tined-light sand blasted, and tined-medium sand blasted surface textures achieved average bond strengths of 0.924, 1.45, and 1.95 MPa, respectively. Dried substrate surfaced specimens had zero bond strength. Surface moisture conditions that ranged from saturated to dry were also investigated by allowing the substrate surfaces to dry for 15, 30, 45, and 60 minutes prior to application of an UHPC overlay. Tined-light sand blasted specimens with surfaces that dried for 15, 30, 45, and 60 minutes achieved average bond strengths of 2.86, 2.01, 1.59, and 0.165 MPa, respectively. Results showed tined-light sand blasted specimens with proper saturating achieved adequate bond strengths, and properly saturated, tined-medium sand blasted specimens produced excellent bond strengths. Results also exposed the drastic consequences of not maintaining a saturated substrate surface prior to overlay application and delaying overlay application up to 60 minutes can drastically reduce bond strength.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1151
Author(s):  
Jaeyoung Song ◽  
Sungbo Shim ◽  
Ji-Sun Kim ◽  
Jae-Hee Lee ◽  
Young-Hwa Byun ◽  
...  

Land surface processes are rarely studied in Detection and Attribution Model Inter-comparison Project (DAMIP) experiments on climate change. We analyzed a CMIP6 DAMIP historical experiment by using multi-linear regression (MLRM) and analysis of variance methods. We focused on energy and water budgets, including gross primary productivity (GPP). In MLRM, we estimated each forcing’s contribution and identified the role of natural forcing, which is usually ignored. Contributions of the forcing factors varied by region, and high-ranked variables such as net radiation could receive multiple influences. Greenhouse gases (GHG) accelerated energy and water cycles over the global land surface, including evapotranspiration, runoff, GPP, and water-use efficiency. Aerosol (AER) forcing displayed the opposite characteristics, and natural forcing accounted for short-term changes. A long-term analysis of total soil moisture and water budget indicated that as the AER increases, the available water on the global land increases continuously. In the recent past, an increase in net radiation (i.e., a lowered AER) reduced surface moisture and hastened surface water cycle (GHG effect). The results imply that aerosol emission and its counterbalance to GHG are essential to most land surface processes. The exception to this is GPP, which was overdominated by GHG effects.


2021 ◽  
pp. 585-593
Author(s):  
Takuya Kondo ◽  
Yuta Nomura ◽  
Shinya Mizutani ◽  
Yoshihiko Nakamoto ◽  
Katsunori Yokoi

2021 ◽  
Author(s):  
Takuma Watanabe ◽  
Hiroyoshi Yamada

In this research, we discuss the possibility of incorrect prediction of the double-bounce scattering (DBS) power in model-based decomposition (MBD) algorithms applied to polarimetric synthetic aperture radar (SAR) images of vegetated terrain. In most of the MBD schemes, the estimation of the DBS component is based on the assumption that the co-polarized phase difference (CPD) of the DBS is similar to those of backscattering from a pair of orthogonal planer conducting surfaces. However, for dielectric surfaces such as soil or vegetation trunks, this assumption is only valid within a certain range of radar incidence angle, which is dictated by the Brewster angles of the dielectric surfaces. If the incidence angle is out of this range, the DBS contribution is incorrectly estimated as the surface scattering. Moreover, because the Brewster angle is a function of surface permittivity, the angular range depends on moisture contents of the surfaces; therefore, correctness of the MBD results also depend on the surface moisture contents. To demonstrate this problem, we provide a simple numerical model of vegetated terrain, and we validate theoretical results by a series of controlled experiments carried out in an anechoic chamber with a simplified vegetation model.


Sign in / Sign up

Export Citation Format

Share Document