scholarly journals Modeling Mean Radiant Temperature Distribution in Urban Landscapes Using DART

2021 ◽  
Vol 13 (8) ◽  
pp. 1443
Author(s):  
Maria Angela Dissegna ◽  
Tiangang Yin ◽  
Hao Wu ◽  
Nicolas Lauret ◽  
Shanshan Wei ◽  
...  

The microclimatic conditions of the urban environment influence significantly the thermal comfort of human beings. One of the main human biometeorology parameters of thermal comfort is the Mean Radiant Temperature (Tmrt), which quantifies effective radiative flux reaching a human body. Simulation tools have proven useful to analyze the radiative behavior of an urban space and its impact on the inhabitants. We present a new method to produce detailed modeling of Tmrt spatial distribution using the 3-D Discrete Anisotropic Radiation Transfer model (DART). Our approach is capable to simulate Tmrt at different scales and under a range of parameters including the urban pattern, surface material of ground, walls, roofs, and properties of the vegetation (coverage, shape, spectral signature, Leaf Area Index and Leaf Area Density). The main advantages of our method are found in (1) the fine treatment of radiation in both short-wave and long-wave domains, (2) detailed specification of optical properties of urban surface materials and of vegetation, (3) precise representation of the vegetation component, and (4) capability to assimilate 3-D inputs derived from multisource remote sensing data. We illustrate and provide a first evaluation of the method in Singapore, a tropical city experiencing strong Urban Heat Island effect (UHI) and seeking to enhance the outdoor thermal comfort. The comparison between DART modelled and field estimated Tmrt shows good agreement in our study site under clear-sky condition over a time period from 10:00 to 19:00 (R2 = 0.9697, RMSE = 3.3249). The use of a 3-D radiative transfer model shows promising capability to study urban microclimate and outdoor thermal comfort with increasing landscape details, and to build linkage to remote sensing data. Our methodology has the potential to contribute towards optimizing climate-sensitive urban design when combined with the appropriate tools.

1999 ◽  
Vol 12 (3) ◽  
pp. 210-220 ◽  
Author(s):  
Takashi ISHII ◽  
Makoto NASHIMOTO ◽  
Hisashi SHIMOGAKI

2014 ◽  
Vol 34 (16) ◽  
Author(s):  
王修信 WANG Xiuxin ◽  
孙涛 SUN Tao ◽  
朱启疆 ZHU Qijiang ◽  
刘馨 LIU Xin ◽  
高凤飞 GAO Fengfei ◽  
...  

1999 ◽  
Vol 7 ◽  
pp. 33-38
Author(s):  
Takashi ISHII ◽  
Makoto NASHIMOTO ◽  
Yoichi MIYANAGA

Sign in / Sign up

Export Citation Format

Share Document