scholarly journals Adaptive Waveform Design with Multipath Exploitation Radar in Heterogeneous Environments

2021 ◽  
Vol 13 (9) ◽  
pp. 1628
Author(s):  
Seden Hazal Gulen Yilmaz ◽  
Chiara Zarro ◽  
Harun Taha Hayvaci ◽  
Silvia Liberata Ullo

The problem of detecting point like targets over a glistening surface is investigated in this manuscript, and the design of an optimal waveform through a two-step process for a multipath exploitation radar is proposed. In the first step, a non-adaptive waveform is transmitted anda constrained Generalized Likelihood Ratio Test (GLRT) detector is deduced at reception which exploits multipath returns in the range cell under test by modelling the target echo as a superposition of the direct plus the multipath returns. Under the hypothesis of heterogeneous environments, thus by assuming a compound-Gaussian distribution for the clutter return, this latter is estimated in the range cell under test through the secondary data, which are collected from the out-of-bin cells. The Fixed Point Estimate (FPE) algorithm is applied in the clutter estimation, then used to design the adaptive waveform for transmission in the second step of the algorithm, in order to suppress the clutter coming from the adjacent cells. The proposed GLRT is also used at the end of the second transmission for the final decision. Extensive performance evaluation of the proposed detector and adaptive waveform for various multipath scenarios is presented. The performance analysis prove that the proposed method improves the Signal-to-Clutter Ratio (SCR) of the received signal, and the detection performance with multipath exploitation.

2021 ◽  
Author(s):  
Dapeng Hu ◽  
Chong Wang ◽  
Annette O'Connor

Abstract Background: Network meta-analysis (NMA) is a statistical method used to combine results from several clinical trials and simultaneously compare multiple treatments using direct and indirect evidence. Statistical heterogeneity is a characteristic describing the variability in the intervention effects being evaluated in the different studies in network meta-analysis. One approach to dealing with statistical heterogeneity is to perform a random effects network meta-analysis that incorporates a between-study variance into the statistical model. A common assumption in the random effects model for network meta-analysis is the homogeneity of between-study variance across all interventions. However, there are applications of NMA where the single between-study assumption is potentially incorrect and instead the model should incorporate more than one between-study variances. Methods: In this paper, we develop an approach to testing the homogeneity of between-study variance assumption based on a likelihood ratio test. A simulation study was conducted to assess the type I error and power of the proposed test. This method is then applied to a network meta-analysis of antibiotic treatments for Bovine respiratory disease (BRD). Results: The type I error rate was well controlled in the Monte Carlo simulation. The homogeneous between-study variance assumption is unrealistic both statistically and practically in the network meta-analysis BRD. The point estimate and conffdence interval of relative effect sizes are strongly inuenced by this assumption. Conclusions: Since homogeneous between-study variance assumption is a strong assumption, it is crucial to test the validity of this assumption before conducting a network meta-analysis. Here we propose and validate a method for testing this single between-study variance assumption which is widely used for many NMA.


Sign in / Sign up

Export Citation Format

Share Document