scholarly journals Rapid Ecosystem Change at the Southern Limit of the Canadian Arctic, Torngat Mountains National Park

2021 ◽  
Vol 13 (11) ◽  
pp. 2085
Author(s):  
Emma L. Davis ◽  
Andrew J. Trant ◽  
Robert G. Way ◽  
Luise Hermanutz ◽  
Darroch Whitaker

Northern protected areas guard against habitat and species loss but are themselves highly vulnerable to environmental change due to their fixed spatial boundaries. In the low Arctic, Torngat Mountains National Park (TMNP) of Canada, widespread greening has recently occurred alongside warming temperatures and regional declines in caribou. Little is known, however, about how biophysical controls mediate plant responses to climate warming, and available observational data are limited in temporal and spatial scope. In this study, we investigated the drivers of land cover change for the 9700 km2 extent of the park using satellite remote sensing and geostatistical modelling. Random forest classification was used to hindcast and simulate land cover change for four different land cover types from 1985 to 2019 with topographic and surface reflectance imagery (Landsat archive). The resulting land cover maps, in addition to topographic and biotic variables, were then used to predict where future shrub expansion is likely to occur using a binomial regression framework. Land cover hindcasts showed a 235% increase in shrub and a 105% increase in wet vegetation cover from 1985/89 to 2015/19. Shrub cover was highly persistent and displaced wet vegetation in southern, low-elevation areas, whereas wet vegetation expanded to formerly dry, mid-elevations. The predictive model identified both biotic (initial cover class, number of surrounding shrub neighbors), and topographic variables (elevation, latitude, and distance to the coast) as strong predictors of future shrub expansion. A further 51% increase in shrub cover is expected by 2039/43 relative to 2014 reference data. Establishing long-term monitoring plots within TMNP in areas where rapid vegetation change is predicted to occur will help to validate remote sensing observations and will improve our understanding of the consequences of change for biotic and abiotic components of the tundra ecosystem, including important cultural keystone species.

2013 ◽  
Vol 19 ◽  
pp. 912-921 ◽  
Author(s):  
M.Minwer Alkharabsheh ◽  
T.K. Alexandridis ◽  
G. Bilas ◽  
N. Misopolinos ◽  
N. Silleos

2021 ◽  
Vol 125 ◽  
pp. 107447 ◽  
Author(s):  
Rehana Rasool ◽  
Abida Fayaz ◽  
Mifta ul Shafiq ◽  
Harmeet Singh ◽  
Pervez Ahmed

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Kiros Tsegay Deribew

AbstractThe main grassland plain of Nech Sar National Park (NSNP) is a federally managed protected area in Ethiopia designated to protect endemic and endangered species. However, like other national parks in Ethiopia, the park has experienced significant land cover change over the past few decades. Indeed, the livelihoods of local populations in such developing countries are entirely dependent upon natural resources and, as a result, both direct and indirect anthropogenic pressures have been placed on natural parks. While previous research has looked at land cover change in the region, these studies have not been spatially explicit and, as a result, knowledge gaps in identifying systematic transitions continue to exist. This study seeks to quantify the spatial extent and land cover change trends in NSNP, identify the strong signal transitions, and identify and quantify the location of determinants of change. To this end, the author classifies panchromatic aerial photographs in 1986, multispectral SPOT imagery in 2005, and Sentinel imagery in 2019. The spatial extent and trends of land cover change analysis between these time periods were conducted. The strong signal transitions were systematically identified and quantified. Then, the basic driving forces of the change were identified. The locations of these transitions were also identified and quantified using the spatially explicit statistical model. The analysis revealed that over the past three decades (1986–2019), nearly 52% of the study area experienced clear landscape change, out of which the net change and swap change attributed to 39% and 13%, respectively. The conversion of woody vegetation to grassland (~ 5%), subsequently grassland-to-open-overgrazed land (28.26%), and restoration of woody vegetation (0.76%) and grassland (0.72%) from riverine forest and open-overgrazed land, respectively, were found to be the fully systematic transitions whereas the rest transitions were recorded either partly systematic or random transitions. The location of these most systematic land cover transitions identified through the spatially explicit statistical modeling showed drivers due to biophysical conditions, accessibility, and urban/market expansions, coupled with successive government policies for biodiversity management, geo-politics, demographic, and socioeconomic factors. These findings provide important insights into biodiversity loss, land degradation, and ecosystem disruption. Therefore, the model for predicted probability generally suggests a 0.75 km and 0.72 km buffers which are likely to protect forest and grassland from conversion to grassland and open-overgrazed land, respectively.


Sign in / Sign up

Export Citation Format

Share Document