scholarly journals Estimation of Paddy Rice Nitrogen Content and Accumulation Both at Leaf and Plant Levels from UAV Hyperspectral Imagery

2021 ◽  
Vol 13 (15) ◽  
pp. 2956
Author(s):  
Li Wang ◽  
Shuisen Chen ◽  
Dan Li ◽  
Chongyang Wang ◽  
Hao Jiang ◽  
...  

Remote sensing-based mapping of crop nitrogen (N) status is beneficial for precision N management over large geographic regions. Both leaf/canopy level nitrogen content and accumulation are valuable for crop nutrient diagnosis. However, previous studies mainly focused on leaf nitrogen content (LNC) estimation. The effects of growth stages on the modeling accuracy have not been widely discussed. This study aimed to estimate different paddy rice N traits—LNC, plant nitrogen content (PNC), leaf nitrogen accumulation (LNA) and plant nitrogen accumulation (PNA)—from unmanned aerial vehicle (UAV)-based hyperspectral images. Additionally, the effects of the growth stage were evaluated. Univariate regression models on vegetation indices (VIs), the traditional multivariate calibration method, partial least squares regression (PLSR) and modern machine learning (ML) methods, including artificial neural network (ANN), random forest (RF), and support vector machine (SVM), were evaluated both over the whole growing season and in each single growth stage (including the tillering, jointing, booting and heading growth stages). The results indicate that the correlation between the four nitrogen traits and the other three biochemical traits—leaf chlorophyll content, canopy chlorophyll content and aboveground biomass—are affected by the growth stage. Within a single growth stage, the performance of selected VIs is relatively constant. For the full-growth-stage models, the performance of the VI-based models is more diverse. For the full-growth-stage models, the transformed chlorophyll absorption in the reflectance index/optimized soil-adjusted vegetation index (TCARI/OSAVI) performs best for LNC, PNC and PNA estimation, while the three band vegetation index (TBVITian) performs best for LNA estimation. There are no obvious patterns regarding which method performs the best of the PLSR, ANN, RF and SVM in either the growth-stage-specific or full-growth-stage models. For the growth-stage-specific models, a lower mean relative error (MRE) and higher R2 can be acquired at the tillering and jointing growth stages. The PLSR and ML methods yield obviously better estimation accuracy for the full-growth-stage models than the VI-based models. For the growth-stage-specific models, the performance of VI-based models seems optimal and cannot be obviously surpassed. These results suggest that building linear regression models on VIs for paddy rice nitrogen traits estimation is still a reasonable choice when only a single growth stage is involved. However, when multiple growth stages are involved or missing the phenology information, using PLSR or ML methods is a better option.

2020 ◽  
Vol 12 (6) ◽  
pp. 957 ◽  
Author(s):  
Hengbiao Zheng ◽  
Jifeng Ma ◽  
Meng Zhou ◽  
Dong Li ◽  
Xia Yao ◽  
...  

This paper evaluates the potential of integrating textural and spectral information from unmanned aerial vehicle (UAV)-based multispectral imagery for improving the quantification of nitrogen (N) status in rice crops. Vegetation indices (VIs), normalized difference texture indices (NDTIs), and their combination were used to estimate four N nutrition parameters leaf nitrogen concentration (LNC), leaf nitrogen accumulation (LNA), plant nitrogen concentration (PNC), and plant nitrogen accumulation (PNA). Results demonstrated that the normalized difference red-edge index (NDRE) performed best in estimating the N nutrition parameters among all the VI candidates. The optimal texture indices had comparable performance in N nutrition parameters estimation as compared to NDRE. Significant improvement for all N nutrition parameters could be obtained by integrating VIs with NDTIs using multiple linear regression. While tested across years and growth stages, the multivariate models also exhibited satisfactory estimation accuracy. For texture analysis, texture metrics calculated in the direction D3 (perpendicular to the row orientation) are recommended for monitoring row-planted crops. These findings indicate that the addition of textural information derived from UAV multispectral imagery could reduce the effects of background materials and saturation and enhance the N signals of rice canopies for the entire season.


2012 ◽  
Vol 524-527 ◽  
pp. 2132-2138 ◽  
Author(s):  
Hui Fang Wang ◽  
Ji Hua Wang ◽  
Mei Chen Feng ◽  
Qian Wang ◽  
Wen Jiang Huang ◽  
...  

Quality of winter wheat from hyperspectral data would provide opportunities to manage grain harvest differently, and to maximize output by adjusting input in fields. In this study, two varieties winter wheat as the object, hyperspectral data were utilized to predict grain quality. Firstly, the leaf and stem nitrogen content at winter wheat anthesis stage was proved to be signification correctly with crude content and wet gluten. And the leaf relatedcoefficient more than stem at the anthesis. Then, spectral indices significantly correlated to plant nitrogen content at anthesis stage were potential indicators for grain qualities. The vegetation index, VI derived from the canopy spectral reflectance was signification correlated to the leaf nitrogen content at anthesis stage, and highly significantly correlated to the leaf nitrogen content. Based on above analysis, the predict grain quality model were build and the related coefficient were 0.86, 0.68, 0.84, 0.58 which were reached a very significant.The result demonstrated the model based on SIPI and RVI to predict different cultivars wheat grain quality were practical and feasible.


2019 ◽  
Vol 11 (3) ◽  
pp. 361 ◽  
Author(s):  
Li Wang ◽  
Qingrui Chang ◽  
Fenling Li ◽  
Lin Yan ◽  
Yong Huang ◽  
...  

A in situ hyperspectral dataset containing multiple growth stages over multiple growing seasons was used to build paddy rice leaf area index (LAI) estimation models with a special focus on the effects of paddy rice growth stage development. The univariate regression method applied to the vegetation index (VI), the traditional multivariate calibration method of partial least squares regression (PLSR), and modern machine learning methods such as support vector regression (SVR), random forests (RF), and artificial neural networks (ANN) based on the original and first-derivative hyperspectral data were evaluated in this study for paddy rice LAI estimation. All the models were built on the whole growing season and on each separate vegetative, reproductive and ripening growth stage of paddy rice separately. To ensure a fair comparison, the models of the whole growing season were also validated on data for each separate growth stage of the standalone validation dataset. Moreover, the optimal band pairs for calculating narrowband difference vegetative index (DVI), normalized difference vegetation index (NDVI) and simple ratio vegetation index (SR) were determined for the whole growing season and for each separate growth stage separately. The results showed that for both the whole growing season and for each single growth stage, the red-edge and near-infrared band pairs are optimal for formulating the narrowband DVI, NDVI and SR. Among the four multivariate calibration methods, SVR and RF yielded more accurate results than the other two methods. The SVR and RF models built on first-derivative spectra provided more accurate results than the corresponding models on the original spectra for both whole growing season models and separate growth stage models. Comparing the prediction accuracy based on the whole growing season revealed that the RF and SVR models showed an advantage over the VI models. However, comparing the prediction accuracy based on each growth stage separately showed that the VI models provided more accurate results for the vegetative growth stages. The SVR and RF models provided more accurate results for the ripening growth stage. However, the whole growing season RF model on first-derivative spectra could provide reasonable accuracy for each single growth stage.


2011 ◽  
Vol 62 (6) ◽  
pp. 474 ◽  
Author(s):  
Tong-Chao Wang ◽  
B. L. Ma ◽  
You-Cai Xiong ◽  
M. Farrukh Saleem ◽  
Feng-Min Li

Optical sensing techniques offer an instant estimation of leaf nitrogen (N) concentration during the crop growing season. Differences in plant-moisture status, however, can obscure the detection of differences in N levels. This study presents a vegetation index that robustly measures differences in foliar N levels across a range of plant moisture levels. A controlled glasshouse study with maize (Zea mays L.) subjected to both water and N regimes was conducted in Ottawa, Canada. The purpose of the study was to identify spectral waveband(s), or indices derived from different wavebands, such as the normalised difference vegetation index (NDVI), that are capable of detecting variations in leaf N concentration in response to different water and N stresses. The experimental design includes three N rates and three water regimes in a factorial arrangement. Leaf chlorophyll content and spectral reflectance (400–1075 nm) were measured on the uppermost fully expanded leaves at the V6, V9 and V12 growth stages (6th, 9th and 12th leaves fully expanded). N concentrations of the same leaves were determined using destructive sampling. A quantitative relationship between leaf N concentration and the normalised chlorophyll index (normalised to well fertilised and well irrigated plants) was established. Leaf N concentration was also a linear function (R2 = 0.9, P < 0.01) of reflectance index (NDVI550, 760) at the V9 and V12 growth stages. Chlorophyll index increased with N nutrition, but decreased with water stress. Leaf reflectance at wavebands of 550 ± 5 nm and 760 ± 5 nm were able to separate water- and N-stressed plants from normal growing plants with sufficient water and N supply. Our results suggest that NDVI550, 760 and normalised chlorophyll index hold promise for the assessment of leaf N concentration at the leaf level of both normal and water-stressed maize plants.


1988 ◽  
Vol 68 (2) ◽  
pp. 411-418 ◽  
Author(s):  
L. D. BAILEY

Seven single strains and a commercial mixture of Bradyrhizobium japonicum were evaluated in association with two early-maturing Canadian soybean (Glycine max (L.) Merrill) cultivars, Maple Presto and Maple Amber. Inoculated and uninoculated plants were grown in pails outdoors. Soil temperature at 15 cm depth was monitored throughout the experiment. At the V2, V3, R2 and R4 growth stages, whole plants were removed from the pails. Nodules were counted and weighed; roots and tops were separated, weighed and analyzed for total nitrogen. Bradyrhizobium japonicum strains 61A148, 61A196, 61A194 and 61A155 were similar in effectiveness, but superior to strains 61A124a, 61A118b, 61A101c and the commercial mixture in earliness of nodule formation, number and weight of nodules per plant, and in promoting greater root and top growth and plant nitrogen accumulation. There were indications that soil temperature may have affected nodulation. Maple Amber showed the greater potential for symbiotic nitrogen fixation. This cultivar supported earlier nodulation, had a greater number of nodules, accumulated more nitrogen in the tops and roots and had greater growth than Maple Presto.Key words: Soybean, Glycine max (L.) Merrill, soil temperature, soybean growth stages, Bradyrhizobium, nodulation


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4937 ◽  
Author(s):  
Ziqing Xia ◽  
Yiping Peng ◽  
Shanshan Liu ◽  
Zhenhua Liu ◽  
Guangxing Wang ◽  
...  

This study proposes a method for determining the optimal image date to improve the evaluation of cultivated land quality (CLQ). Five vegetation indices: leaf area index (LAI), difference vegetation index (DVI), enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and ratio vegetation index (RVI) are first retrieved using the PROSAIL model and Gaofen-1 (GF-1) images. The indices are then introduced into four regression models at different growth stages for assessing CLQ. The optimal image date of CLQ evaluation is finally determined according to the root mean square error (RMSE). This method is tested and validated in a rice growth area of Southern China based on 115 sample plots and five GF-1 images acquired at the tillering, jointing, booting, heading to flowering, and milk ripe and maturity stage of rice in 2015, respectively. The results show that the RMSEs between the measured and estimated CLQ from four vegetation index-based regression models at the heading to flowering stage are smaller than those at the other growth stages, indicating that the image date corresponding with the heading to flowering stage is optimal for CLQ evaluation. Compared with other vegetation index-based models, the LAI-based logarithm model provides the most accurate estimates of CLQ. The optimal model is also driven using the GF-1 image at the heading to flowering stage to map CLQ of the study area, leading to a relative RMSE of 14.09% at the regional scale. This further implies that the heading to flowering stage is the optimal image time for evaluating CLQ. This study is the first effort to provide an applicable method of selecting the optimal image date to improve the estimation of CLQ and thus advanced the literature in this field.


Sign in / Sign up

Export Citation Format

Share Document