scholarly journals Outdoor Mobile Mapping and AI-Based 3D Object Detection with Low-Cost RGB-D Cameras: The Use Case of On-Street Parking Statistics

2021 ◽  
Vol 13 (16) ◽  
pp. 3099
Author(s):  
Stephan Nebiker ◽  
Jonas Meyer ◽  
Stefan Blaser ◽  
Manuela Ammann ◽  
Severin Rhyner

A successful application of low-cost 3D cameras in combination with artificial intelligence (AI)-based 3D object detection algorithms to outdoor mobile mapping would offer great potential for numerous mapping, asset inventory, and change detection tasks in the context of smart cities. This paper presents a mobile mapping system mounted on an electric tricycle and a procedure for creating on-street parking statistics, which allow government agencies and policy makers to verify and adjust parking policies in different city districts. Our method combines georeferenced red-green-blue-depth (RGB-D) imagery from two low-cost 3D cameras with state-of-the-art 3D object detection algorithms for extracting and mapping parked vehicles. Our investigations demonstrate the suitability of the latest generation of low-cost 3D cameras for real-world outdoor applications with respect to supported ranges, depth measurement accuracy, and robustness under varying lighting conditions. In an evaluation of suitable algorithms for detecting vehicles in the noisy and often incomplete 3D point clouds from RGB-D cameras, the 3D object detection network PointRCNN, which extends region-based convolutional neural networks (R-CNNs) to 3D point clouds, clearly outperformed all other candidates. The results of a mapping mission with 313 parking spaces show that our method is capable of reliably detecting parked cars with a precision of 100% and a recall of 97%. It can be applied to unslotted and slotted parking and different parking types including parallel, perpendicular, and angle parking.

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1205
Author(s):  
Zhiyu Wang ◽  
Li Wang ◽  
Bin Dai

Object detection in 3D point clouds is still a challenging task in autonomous driving. Due to the inherent occlusion and density changes of the point cloud, the data distribution of the same object will change dramatically. Especially, the incomplete data with sparsity or occlusion can not represent the complete characteristics of the object. In this paper, we proposed a novel strong–weak feature alignment algorithm between complete and incomplete objects for 3D object detection, which explores the correlations within the data. It is an end-to-end adaptive network that does not require additional data and can be easily applied to other object detection networks. Through a complete object feature extractor, we achieve a robust feature representation of the object. It serves as a guarding feature to help the incomplete object feature generator to generate effective features. The strong–weak feature alignment algorithm reduces the gap between different states of the same object and enhances the ability to represent the incomplete object. The proposed adaptation framework is validated on the KITTI object benchmark and gets about 6% improvement in detection average precision on 3D moderate difficulty compared to the basic model. The results show that our adaptation method improves the detection performance of incomplete 3D objects.


2020 ◽  
Vol 34 (07) ◽  
pp. 12460-12467
Author(s):  
Liang Xie ◽  
Chao Xiang ◽  
Zhengxu Yu ◽  
Guodong Xu ◽  
Zheng Yang ◽  
...  

LIDAR point clouds and RGB-images are both extremely essential for 3D object detection. So many state-of-the-art 3D detection algorithms dedicate in fusing these two types of data effectively. However, their fusion methods based on Bird's Eye View (BEV) or voxel format are not accurate. In this paper, we propose a novel fusion approach named Point-based Attentive Cont-conv Fusion(PACF) module, which fuses multi-sensor features directly on 3D points. Except for continuous convolution, we additionally add a Point-Pooling and an Attentive Aggregation to make the fused features more expressive. Moreover, based on the PACF module, we propose a 3D multi-sensor multi-task network called Pointcloud-Image RCNN(PI-RCNN as brief), which handles the image segmentation and 3D object detection tasks. PI-RCNN employs a segmentation sub-network to extract full-resolution semantic feature maps from images and then fuses the multi-sensor features via powerful PACF module. Beneficial from the effectiveness of the PACF module and the expressive semantic features from the segmentation module, PI-RCNN can improve much in 3D object detection. We demonstrate the effectiveness of the PACF module and PI-RCNN on the KITTI 3D Detection benchmark, and our method can achieve state-of-the-art on the metric of 3D AP.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiang Song ◽  
Weiqin Zhan ◽  
Xiaoyu Che ◽  
Huilin Jiang ◽  
Biao Yang

Three-dimensional object detection can provide precise positions of objects, which can be beneficial to many robotics applications, such as self-driving cars, housekeeping robots, and autonomous navigation. In this work, we focus on accurate object detection in 3D point clouds and propose a new detection pipeline called scale-aware attention-based PillarsNet (SAPN). SAPN is a one-stage 3D object detection approach similar to PointPillar. However, SAPN achieves better performance than PointPillar by introducing the following strategies. First, we extract multiresolution pillar-level features from the point clouds to make the detection approach more scale-aware. Second, a spatial-attention mechanism is used to highlight the object activations in the feature maps, which can improve detection performance. Finally, SE-attention is employed to reweight the features fed into the detection head, which performs 3D object detection in a multitask learning manner. Experiments on the KITTI benchmark show that SAPN achieved similar or better performance compared with several state-of-the-art LiDAR-based 3D detection methods. The ablation study reveals the effectiveness of each proposed strategy. Furthermore, strategies used in this work can be embedded easily into other LiDAR-based 3D detection approaches, which improve their detection performance with slight modifications.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


Author(s):  
Zhiyong Gao ◽  
Jianhong Xiang

Background: While detecting the object directly from the 3D point cloud, the natural 3D patterns and invariance of 3D data are often obscure. Objective: In this work, we aimed at studying the 3D object detection from discrete, disordered and sparse 3D point clouds. Methods: The CNN is composed of the frustum sequence module, 3D instance segmentation module S-NET, 3D point cloud transformation module T-NET, and 3D boundary box estimation module E-NET. The search space of the object is determined by the frustum sequence module. The instance segmentation of the point cloud is performed by the 3D instance segmentation module. The 3D coordinates of the object are confirmed by the transformation module and the 3D bounding box estimation module. Results: Evaluated on KITTI benchmark dataset, our method outperforms the state of the art by remarkable margins while having real-time capability. Conclusion: We achieve real-time 3D object detection by proposing an improved convolutional neural network (CNN) based on image-driven point clouds.


Author(s):  
Robert Debortoli ◽  
Fuxin Li ◽  
Ashish Kapoor ◽  
Geoffrey Hollinger

2021 ◽  
pp. 187-203
Author(s):  
Huiying Wang ◽  
Huixin Shen ◽  
Boyang Zhang ◽  
Yu Wen ◽  
Dan Meng

Author(s):  
Xin Zhao ◽  
Zhe Liu ◽  
Ruolan Hu ◽  
Kaiqi Huang

3D object detection plays an important role in a large number of real-world applications. It requires us to estimate the localizations and the orientations of 3D objects in real scenes. In this paper, we present a new network architecture which focuses on utilizing the front view images and frustum point clouds to generate 3D detection results. On the one hand, a PointSIFT module is utilized to improve the performance of 3D segmentation. It can capture the information from different orientations in space and the robustness to different scale shapes. On the other hand, our network obtains the useful features and suppresses the features with less information by a SENet module. This module reweights channel features and estimates the 3D bounding boxes more effectively. Our method is evaluated on both KITTI dataset for outdoor scenes and SUN-RGBD dataset for indoor scenes. The experimental results illustrate that our method achieves better performance than the state-of-the-art methods especially when point clouds are highly sparse.


Author(s):  
Rui Huang ◽  
Wanyue Zhang ◽  
Abhijit Kundu ◽  
Caroline Pantofaru ◽  
David A. Ross ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document