scholarly journals Scale-Aware Attention-Based PillarsNet (SAPN) Based 3D Object Detection for Point Cloud

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiang Song ◽  
Weiqin Zhan ◽  
Xiaoyu Che ◽  
Huilin Jiang ◽  
Biao Yang

Three-dimensional object detection can provide precise positions of objects, which can be beneficial to many robotics applications, such as self-driving cars, housekeeping robots, and autonomous navigation. In this work, we focus on accurate object detection in 3D point clouds and propose a new detection pipeline called scale-aware attention-based PillarsNet (SAPN). SAPN is a one-stage 3D object detection approach similar to PointPillar. However, SAPN achieves better performance than PointPillar by introducing the following strategies. First, we extract multiresolution pillar-level features from the point clouds to make the detection approach more scale-aware. Second, a spatial-attention mechanism is used to highlight the object activations in the feature maps, which can improve detection performance. Finally, SE-attention is employed to reweight the features fed into the detection head, which performs 3D object detection in a multitask learning manner. Experiments on the KITTI benchmark show that SAPN achieved similar or better performance compared with several state-of-the-art LiDAR-based 3D detection methods. The ablation study reveals the effectiveness of each proposed strategy. Furthermore, strategies used in this work can be embedded easily into other LiDAR-based 3D detection approaches, which improve their detection performance with slight modifications.

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1205
Author(s):  
Zhiyu Wang ◽  
Li Wang ◽  
Bin Dai

Object detection in 3D point clouds is still a challenging task in autonomous driving. Due to the inherent occlusion and density changes of the point cloud, the data distribution of the same object will change dramatically. Especially, the incomplete data with sparsity or occlusion can not represent the complete characteristics of the object. In this paper, we proposed a novel strong–weak feature alignment algorithm between complete and incomplete objects for 3D object detection, which explores the correlations within the data. It is an end-to-end adaptive network that does not require additional data and can be easily applied to other object detection networks. Through a complete object feature extractor, we achieve a robust feature representation of the object. It serves as a guarding feature to help the incomplete object feature generator to generate effective features. The strong–weak feature alignment algorithm reduces the gap between different states of the same object and enhances the ability to represent the incomplete object. The proposed adaptation framework is validated on the KITTI object benchmark and gets about 6% improvement in detection average precision on 3D moderate difficulty compared to the basic model. The results show that our adaptation method improves the detection performance of incomplete 3D objects.


2021 ◽  
Author(s):  
Hung-Hao Chen ◽  
Chia-Hung Wang ◽  
Hsueh-Wei Chen ◽  
Pei-Yung Hsiao ◽  
Li-Chen Fu ◽  
...  

The current fusion-based methods transform LiDAR data into bird’s eye view (BEV) representations or 3D voxel, leading to information loss and heavy computation cost of 3D convolution. In contrast, we directly consume raw point clouds and perform fusion between two modalities. We employ the concept of region proposal network to generate proposals from two streams, respectively. In order to make two sensors compensate the weakness of each other, we utilize the calibration parameters to project proposals from one stream onto the other. With the proposed multi-scale feature aggregation module, we are able to combine the extracted regionof-interest-level (RoI-level) features of RGB stream from different receptive fields, resulting in fertilizing feature richness. Experiments on KITTI dataset show that our proposed network outperforms other fusion-based methods with meaningful improvements as compared to 3D object detection methods under challenging setting.


2020 ◽  
Vol 34 (07) ◽  
pp. 12460-12467
Author(s):  
Liang Xie ◽  
Chao Xiang ◽  
Zhengxu Yu ◽  
Guodong Xu ◽  
Zheng Yang ◽  
...  

LIDAR point clouds and RGB-images are both extremely essential for 3D object detection. So many state-of-the-art 3D detection algorithms dedicate in fusing these two types of data effectively. However, their fusion methods based on Bird's Eye View (BEV) or voxel format are not accurate. In this paper, we propose a novel fusion approach named Point-based Attentive Cont-conv Fusion(PACF) module, which fuses multi-sensor features directly on 3D points. Except for continuous convolution, we additionally add a Point-Pooling and an Attentive Aggregation to make the fused features more expressive. Moreover, based on the PACF module, we propose a 3D multi-sensor multi-task network called Pointcloud-Image RCNN(PI-RCNN as brief), which handles the image segmentation and 3D object detection tasks. PI-RCNN employs a segmentation sub-network to extract full-resolution semantic feature maps from images and then fuses the multi-sensor features via powerful PACF module. Beneficial from the effectiveness of the PACF module and the expressive semantic features from the segmentation module, PI-RCNN can improve much in 3D object detection. We demonstrate the effectiveness of the PACF module and PI-RCNN on the KITTI 3D Detection benchmark, and our method can achieve state-of-the-art on the metric of 3D AP.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 136
Author(s):  
Fangyu Li ◽  
Weizheng Jin ◽  
Cien Fan ◽  
Lian Zou ◽  
Qingsheng Chen ◽  
...  

3D object detection in LiDAR point clouds has been extensively used in autonomous driving, intelligent robotics, and augmented reality. Although the one-stage 3D detector has satisfactory training and inference speed, there are still some performance problems due to insufficient utilization of bird’s eye view (BEV) information. In this paper, a new backbone network is proposed to complete the cross-layer fusion of multi-scale BEV feature maps, which makes full use of various information for detection. Specifically, our proposed backbone network can be divided into a coarse branch and a fine branch. In the coarse branch, we use the pyramidal feature hierarchy (PFH) to generate multi-scale BEV feature maps, which retain the advantages of different levels and serves as the input of the fine branch. In the fine branch, our proposed pyramid splitting and aggregation (PSA) module deeply integrates different levels of multi-scale feature maps, thereby improving the expressive ability of the final features. Extensive experiments on the challenging KITTI-3D benchmark show that our method has better performance in both 3D and BEV object detection compared with some previous state-of-the-art methods. Experimental results with average precision (AP) prove the effectiveness of our network.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 704 ◽  
Author(s):  
Hongwu Kuang ◽  
Bei Wang ◽  
Jianping An ◽  
Ming Zhang ◽  
Zehan Zhang

Object detection in point cloud data is one of the key components in computer vision systems, especially for autonomous driving applications. In this work, we present Voxel-Feature Pyramid Network, a novel one-stage 3D object detector that utilizes raw data from LIDAR sensors only. The core framework consists of an encoder network and a corresponding decoder followed by a region proposal network. Encoder extracts and fuses multi-scale voxel information in a bottom-up manner, whereas decoder fuses multiple feature maps from various scales by Feature Pyramid Network in a top-down way. Extensive experiments show that the proposed method has better performance on extracting features from point data and demonstrates its superiority over some baselines on the challenging KITTI-3D benchmark, obtaining good performance on both speed and accuracy in real-world scenarios.


2021 ◽  
Vol 13 (16) ◽  
pp. 3099
Author(s):  
Stephan Nebiker ◽  
Jonas Meyer ◽  
Stefan Blaser ◽  
Manuela Ammann ◽  
Severin Rhyner

A successful application of low-cost 3D cameras in combination with artificial intelligence (AI)-based 3D object detection algorithms to outdoor mobile mapping would offer great potential for numerous mapping, asset inventory, and change detection tasks in the context of smart cities. This paper presents a mobile mapping system mounted on an electric tricycle and a procedure for creating on-street parking statistics, which allow government agencies and policy makers to verify and adjust parking policies in different city districts. Our method combines georeferenced red-green-blue-depth (RGB-D) imagery from two low-cost 3D cameras with state-of-the-art 3D object detection algorithms for extracting and mapping parked vehicles. Our investigations demonstrate the suitability of the latest generation of low-cost 3D cameras for real-world outdoor applications with respect to supported ranges, depth measurement accuracy, and robustness under varying lighting conditions. In an evaluation of suitable algorithms for detecting vehicles in the noisy and often incomplete 3D point clouds from RGB-D cameras, the 3D object detection network PointRCNN, which extends region-based convolutional neural networks (R-CNNs) to 3D point clouds, clearly outperformed all other candidates. The results of a mapping mission with 313 parking spaces show that our method is capable of reliably detecting parked cars with a precision of 100% and a recall of 97%. It can be applied to unslotted and slotted parking and different parking types including parallel, perpendicular, and angle parking.


Signals ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 98-107
Author(s):  
Yiran Li ◽  
Han Xie ◽  
Hyunchul Shin

Three-dimensional (3D) object detection is essential in autonomous driving. Three-dimensional (3D) Lidar sensor can capture three-dimensional objects, such as vehicles, cycles, pedestrians, and other objects on the road. Although Lidar can generate point clouds in 3D space, it still lacks the fine resolution of 2D information. Therefore, Lidar and camera fusion has gradually become a practical method for 3D object detection. Previous strategies focused on the extraction of voxel points and the fusion of feature maps. However, the biggest challenge is in extracting enough edge information to detect small objects. To solve this problem, we found that attention modules are beneficial in detecting small objects. In this work, we developed Frustum ConvNet and attention modules for the fusion of images from a camera and point clouds from a Lidar. Multilayer Perceptron (MLP) and tanh activation functions were used in the attention modules. Furthermore, the attention modules were designed on PointNet to perform multilayer edge detection for 3D object detection. Compared with a previous well-known method, Frustum ConvNet, our method achieved competitive results, with an improvement of 0.27%, 0.43%, and 0.36% in Average Precision (AP) for 3D object detection in easy, moderate, and hard cases, respectively, and an improvement of 0.21%, 0.27%, and 0.01% in AP for Bird’s Eye View (BEV) object detection in easy, moderate, and hard cases, respectively, on the KITTI detection benchmarks. Our method also obtained the best results in four cases in AP on the indoor SUN-RGBD dataset for 3D object detection.


2019 ◽  
Vol 9 (6) ◽  
pp. 1065 ◽  
Author(s):  
Kai Xu ◽  
Zhile Yang ◽  
Yangjie Xu ◽  
Liangbing Feng

This paper aims at tackling the task of fusion feature from images and their corresponding point clouds for 3D object detection in autonomous driving scenarios based on AVOD, an Aggregate View Object Detection network. The proposed fusion algorithms fuse features targeted from Bird’s Eye View (BEV) LIDAR point clouds and their corresponding RGB images. Differing in existing fusion methods, which are simply the adoption of the concatenation module, the element-wise sum module or the element-wise mean module, our proposed fusion algorithms enhance the interaction between BEV feature maps and their corresponding image feature maps by designing a novel structure, where single level feature maps and utilize multilevel feature maps. Experiments show that our proposed fusion algorithm produces better results on 3D mAP and AHS with less speed loss compared to the existing fusion method used on the KITTI 3D object detection benchmark.


Author(s):  
Kai Xu ◽  
Zhile Yang ◽  
Yangjie Xu ◽  
Liangbing Feng

This paper aims at tackling with the task of fusion feature from images and its corresponding point clouds for 3D object detection in autonomous driving scenarios basing on AVOD, an Aggregate View Object Detection network. The proposed fusion algorithms fuse features targeted from Bird’s Eye View (BEV) LIDAR point clouds and its corresponding RGB images. Differs in existing fusion methods, which are simply the adoptions of concatenation module, element-wise sum module or element-wise mean module, our proposed fusion algorithms enhance the interaction between BEV feature maps and its corresponding images feature maps by designing a novel structure, where single level feature maps and another utilizes multilevel feature maps. Experiments show that our proposed fusion algorithm produces better results on 3D mAP and AHS with less speed loss comparing to existing fusion method used on the KITTI 3D object detection benchmark.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


Sign in / Sign up

Export Citation Format

Share Document