scholarly journals A Sentinel-1 Backscatter Datacube for Global Land Monitoring Applications

2021 ◽  
Vol 13 (22) ◽  
pp. 4622
Author(s):  
Wolfgang Wagner ◽  
Bernhard Bauer-Marschallinger ◽  
Claudio Navacchi ◽  
Felix Reuß ◽  
Senmao Cao ◽  
...  

The Sentinel-1 Synthetic Aperture Radar (SAR) satellites allow global monitoring of the Earth’s land surface with unprecedented spatio-temporal coverage. Yet, implementing large-scale monitoring capabilities is a challenging task given the large volume of data from Sentinel-1 and the complex algorithms needed to convert the SAR intensity data into higher-level geophysical data products. While on-demand processing solutions have been proposed to cope with the petabyte-scale data volumes, in practice many applications require preprocessed datacubes that permit fast access to multi-year time series and image stacks. To serve near-real-time as well as offline land monitoring applications, we have created a Sentinel-1 backscatter datacube for all continents (except Antarctica) that is constantly being updated and maintained to ensure consistency and completeness of the data record over time. In this technical note, we present the technical specifications of the datacube, means of access and analysis capabilities, and its use in scientific and operational applications.

2018 ◽  
Author(s):  
Chris Huntingford ◽  
Rebecca J. Oliver ◽  
Lina M. Mercado ◽  
Stephen Sitch

Abstract. Elevated levels of tropospheric Ozone [O3] causes damage to terrestrial vegetation, affecting leaf stomatal functioning and reducing photosynthesis. Climatic impacts under future raised atmospheric Greenhouse Gas (GHG) concentrations will also impact on the Net Primary Productivity (NPP) of vegetation, which might for instance alter viability of some crops. Together, ozone damage and climate change may adjust the current ability of terrestrial vegetation to offset a significant fraction of carbon dioxide (CO2) emissions. Climate impacts on the land surface are well studied, but arguably large-scale modelling of raised surface level [O3] effects is less advanced. To date most models representing ozone damage use either [O3] concentration or, more recently, flux-uptake related reduction of stomatal opening, estimating suppressed land-atmosphere water and CO2 fluxes. However there is evidence that for some species, [O3] damage can also cause an inertial sluggishness of stomatal response to changing surface meteorological conditions. In some circumstances e.g. droughts, this loss of stomata control can cause them to be more open than without ozone interference. The extent of this effect may be dependent on magnitude and cumulated time of exposure to raised [O3], suggesting experiments to analyze this require operation over long timescales such as full growing seasons. To both aid model development and provide empiricists with a system on to which measurements can be mapped, we present a parameter-sparse framework specifically designed to capture sluggishness. This contains a single time-delay parameter τO3, characterising the timescale for stomata to catch up with the level of opening they would have with- out damage. The larger the value of this parameter, the more sluggish the modelled stomatal response. Through variation of τO3, we find it is possible to have qualitatively similar responses to factorial experiments with and without raised [O3], when comparing to measurement timeseries presented in the literature. This low-parameter approach lends itself to the inclusion of ozone-induced inertial effects being incorporated in the terrestrial vegetation component of Earth System Models (ESMs).


2021 ◽  
Vol 9 ◽  
Author(s):  
Nitu Ojha ◽  
Olivier Merlin ◽  
Christophe Suere ◽  
Maria José Escorihuela

DISPATCH is a disaggregation algorithm of the low-resolution soil moisture (SM) estimates derived from passive microwave observations. It provides disaggregated SM data at typically 1 km resolution by using the soil evaporative efficiency (SEE) estimated from optical/thermal data collected around solar noon. DISPATCH is based on the relationship between the evapo-transpiration rate and the surface SM under non-energy-limited conditions and hence is well adapted for semi-arid regions with generally low cloud cover and sparse vegetation. The objective of this paper is to extend the spatio-temporal coverage of DISPATCH data by 1) including more densely vegetated areas and 2) assessing the usefulness of thermal data collected earlier in the morning. Especially, we evaluate the performance of the Temperature Vegetation Dryness Index (TVDI) instead of SEE in the DISPATCH algorithm over vegetated areas (called vegetation-extended DISPATCH) and we quantify the increase in coverage using Sentinel-3 (overpass at around 09:30 am) instead of MODIS (overpass at around 10:30 am and 1:30 pm for Terra and Aqua, respectively) data. In this study, DISPATCH is applied to 36 km resolution Soil Moisture Active and Passive SM data over three 50 km by 50 km areas in Spain and France to assess the effectiveness of the approach over temperate and semi-arid regions. The use of TVDI within DISPATCH increases the coverage of disaggregated images by 9 and 14% over the temperate and semi-arid sites, respectively. Moreover, including the vegetated pixels in the validation areas increases the overall correlation between satellite and in situ SM from 0.36 to 0.43 and from 0.41 to 0.79 for the temperate and semi-arid regions, respectively. The use of Sentinel-3 can increase the spatio-temporal coverage by up to 44% over the considered MODIS tile, while the overlapping disaggregated data sets derived from Sentinel-3 and MODIS land surface temperature data are strongly correlated (around 0.7). Additionally, the correlation between satellite and in situ SM is significantly better for DISPATCH (0.39–0.80) than for the Copernicus Sentinel-1-based (−0.03 to 0.69) and SMAP/S1 (0.37–0.74) product over the three studies (temperate and semi-arid) areas, with an increase in yearly valid retrievals for the vegetation-extended DISPATCH algorithm.


2020 ◽  
Vol 13 (1) ◽  
pp. 44
Author(s):  
Jiang Liu ◽  
Daniel Fiifi Tawia Hagan ◽  
Yi Liu

Land surface temperature (LST) plays a critical role in the water cycle and energy balance at global and regional scales. Large-scale LST estimates can be obtained from satellite observations and reanalysis data. In this study, we first investigate the long-term changes of LST during 2003–2017 on a per-pixel basis using three different datasets derived from (i) the Atmospheric Infrared Sounder (AIRS) onboard Aqua satellite, (ii) the Moderate Resolution Imaging Spectroradiometer (MODIS) also aboard Aqua, and (iii) the recently released ERA5-Land reanalysis data. It was found that the spatio-temporal patterns of these data agree very well. All three products globally showed an uptrend in the annual average LST during 2003–2017 but with considerable spatial variations. The strongest increase was found over the region north of 45° N, particularly over Asian Russia, whereas a slight decrease was observed over Australia. The regression analysis indicated that precipitation (P), incoming surface solar radiation (SW↓), and incoming surface longwave radiation (LW↓) can together explain the inter-annual LST variations over most regions, except over tropical forests, where the inter-annual LST variation is low. Spatially, the LST changes during 2003–2017 over the region north of 45° N were mainly influenced by LW↓, while P and SW↓ played a more important role over other regions. A detailed look at Asian Russia and the Amazon rainforest at a monthly time scale showed that warming in Asian Russia is dominated by LST increases in February–April, which are closely related with the simultaneously increasing LW↓ and clouds. Over the southern Amazon, the most apparent LST increase is found in the dry season (August–September), primarily affected by decreasing P. In addition, increasing SW↓ associated with decreasing atmospheric aerosols was another factor found to cause LST increases. This study shows a high level of consistency among LST trends derived from satellite and reanalysis products, thus providing more robust characteristics of the spatio-temporal LST changes during 2003–2017. Furthermore, the major climatic drivers of LST changes during 2003–2017 were identified over different regions, which might help us predict the LST in response to changing climate in the future.


2019 ◽  
Vol 8 (9) ◽  
pp. 389
Author(s):  
Xinliang Liu ◽  
Yi Wang ◽  
Yong Li ◽  
Jinshui Wu

The integrated recognition of spatio-temporal characteristics (e.g., speed, interaction with surrounding areas, and driving forces) of urbanization facilitates regional comprehensive development. In this study, a large-scale data-driven approach was formed for exploring the township urbanization process. The approach integrated logistic models to quantify urbanization speed, partial triadic analysis to reveal dynamic relationships between rural population migration and urbanization, and random forest analysis to identify the response of urbanization to spatial driving forces. A typical subtropical town was chosen to verify the approach by quantifying the spatio-temporal process of township urbanization from 1933 to 2012. The results showed that (i) urbanization speed was well reflected by the changes of time-course areas of urban cores fitted by a four-parameter logistic equation (R2 = 0.95–1.00, p < 0.001), and the relatively fast and steady developing periods were also successfully predicted, respectively; (ii) the spatio-temporal sprawl of urban cores and their interactions with the surrounding rural residential areas were well revealed and implied that the town experienced different historically aggregating and splitting trajectories; and (iii) the key drivers (township merger, elevation and distance to roads, as well as population migration) were identified in the spatial sprawl of urban cores. Our findings proved that a comprehensive approach is powerful for quantifying the spatio-temporal characteristics of the urbanization process at the township level and emphasized the importance of applying long-term historical data when researching the urbanization process.


2018 ◽  
Vol 15 (17) ◽  
pp. 5415-5422 ◽  
Author(s):  
Chris Huntingford ◽  
Rebecca J. Oliver ◽  
Lina M. Mercado ◽  
Stephen Sitch

Abstract. Elevated levels of tropospheric ozone, O3, cause damage to terrestrial vegetation, affecting leaf stomatal functioning and reducing photosynthesis. Climatic impacts under future raised atmospheric greenhouse gas (GHG) concentrations will also impact on the net primary productivity (NPP) of vegetation, which might for instance alter viability of some crops. Together, ozone damage and climate change may adjust the current ability of terrestrial vegetation to offset a significant fraction of carbon dioxide (CO2) emissions. Climate impacts on the land surface are well studied, but arguably large-scale modelling of raised surface level O3 effects is less advanced. To date most models representing ozone damage use either O3 concentration or, more recently, flux-uptake-related reduction of stomatal opening, estimating suppressed land–atmosphere water and CO2 fluxes. However there is evidence that, for some species, O3 damage can also cause an inertial “sluggishness” of stomatal response to changing surface meteorological conditions. In some circumstances (e.g. droughts), this loss of stomata control can cause them to be more open than without ozone interference. To both aid model development and provide empiricists with a system on to which measurements can be mapped, we present a parameter-sparse framework specifically designed to capture sluggishness. This contains a single time-delay parameter τO3, characterizing the timescale for stomata to catch up with the level of opening they would have without damage. The larger the value of this parameter, the more sluggish the modelled stomatal response. Through variation of τO3, we find it is possible to have qualitatively similar responses to factorial experiments with and without raised O3, when comparing to reported measurement time series presented in the literature. This low-parameter approach lends itself to the inclusion of ozone-induced inertial effects being incorporated in the terrestrial vegetation component of Earth system models (ESMs).


Author(s):  
P. Baumann ◽  
V. Merticariu ◽  
A. Dumitru ◽  
D. Misev

With the unprecedented availability of continuously updated measured and generated data there is an immense potential for getting new and timely insights &ndash; yet, the value is not fully leveraged as of today. The quest is up for high-level service interfaces for dissecting datasets and rejoining them with other datasets &ndash; ultimately, to allow users to ask "any question, anytime, on any size" enabling them to "build their own product on the go". <br><br> With OGC Coverages, a concrete, interoperable data model has been established which unifies n-D spatio-temporal regular and irregular grids, point clouds, and meshes. The Web Coverage Service (WCS) suite provides versatile streamlined coverage functionality ranging from simple access to flexible spatio-temporal analytics. Flexibility and scalability of the WCS suite has been demonstrated in practice through massive services run by large-scale data centers. We present the current status in OGC Coverage data and service models, contrast them to related work, and describe a scalable implementation based on the rasdaman array engine.


2014 ◽  
Vol 94 (7) ◽  
pp. 1401-1408 ◽  
Author(s):  
Stephen K. Pikesley ◽  
Brendan J. Godley ◽  
Sue Ranger ◽  
Peter B. Richardson ◽  
Matthew J. Witt

Concern has been expressed over future biogeographical expansion and habitat capitalization by species of the phylum Cnidaria, as this may have negative implications on human activities and ecosystems. There is, however, a paucity of knowledge and understanding of jellyfish ecology, in particular species distribution and seasonality. Recent studies in the UK have principally focused on the Celtic, Irish and North Seas, but all in isolation. In this study we analyse data from a publicly-driven sightings scheme across UK coastal waters (2003–2011; 9 years), with the aim of increasing knowledge on spatial and temporal patterns and trends. We describe inter-annual variability, seasonality and patterns of spatial distribution, and compare these with existing historic literature. Although incidentally-collected data lack quantification of effort, we suggest that with appropriate data management and interpretation, publicly-driven, citizen-science-based, recording schemes can provide for large-scale (spatial and temporal) coverage that would otherwise be logistically and financially unattainable. These schemes may also contribute to baseline data from which future changes in patterns or trends might be identified. We further suggest that findings from such schemes may be strengthened by the inclusion of some element of effort-corrected data collection.


Author(s):  
P. Baumann ◽  
V. Merticariu ◽  
A. Dumitru ◽  
D. Misev

With the unprecedented availability of continuously updated measured and generated data there is an immense potential for getting new and timely insights &ndash; yet, the value is not fully leveraged as of today. The quest is up for high-level service interfaces for dissecting datasets and rejoining them with other datasets &ndash; ultimately, to allow users to ask "any question, anytime, on any size" enabling them to "build their own product on the go". &lt;br&gt;&lt;br&gt; With OGC Coverages, a concrete, interoperable data model has been established which unifies n-D spatio-temporal regular and irregular grids, point clouds, and meshes. The Web Coverage Service (WCS) suite provides versatile streamlined coverage functionality ranging from simple access to flexible spatio-temporal analytics. Flexibility and scalability of the WCS suite has been demonstrated in practice through massive services run by large-scale data centers. We present the current status in OGC Coverage data and service models, contrast them to related work, and describe a scalable implementation based on the rasdaman array engine.


Sign in / Sign up

Export Citation Format

Share Document