scholarly journals On the Potential of 3D Transdimensional Surface Wave Tomography for Geothermal Prospecting of the Reykjanes Peninsula

2021 ◽  
Vol 13 (23) ◽  
pp. 4929
Author(s):  
Amin Rahimi Dalkhani ◽  
Xin Zhang ◽  
Cornelis Weemstra

Seismic travel time tomography using surface waves is an effective tool for three-dimensional crustal imaging. Historically, these surface waves are the result of active seismic sources or earthquakes. More recently, however, surface waves retrieved through the application of seismic interferometry have also been exploited. Conventionally, two-step inversion algorithms are employed to solve the tomographic inverse problem. That is, a first inversion results in frequency-dependent, two-dimensional maps of phase velocity, which then serve as input for a series of independent, one-dimensional frequency-to-depth inversions. As such, a set of localized depth-dependent velocity profiles are obtained at the surface points. Stitching these separate profiles together subsequently yields a three-dimensional velocity model. Relatively recently, a one-step three-dimensional non-linear tomographic algorithm has been proposed. The algorithm is rooted in a Bayesian framework using Markov chains with reversible jumps, and is referred to as transdimensional tomography. Specifically, the three-dimensional velocity field is parameterized by means of a polyhedral Voronoi tessellation. In this study, we investigate the potential of this algorithm for the purpose of recovering the three-dimensional surface-wave-velocity structure from ambient noise recorded on and around the Reykjanes Peninsula, southwest Iceland. To that end, we design a number of synthetic tests that take into account the station configuration of the Reykjanes seismic network. We find that the algorithm is able to recover the 3D velocity structure at various scales in areas where station density is high. In addition, we find that the standard deviation of the recovered velocities is low in those regions. At the same time, the velocity structure is less well recovered in parts of the peninsula sampled by fewer stations. This implies that the algorithm successfully adapts model resolution to the density of rays. It also adapts model resolution to the amount of noise in the travel times. Because the algorithm is computationally demanding, we modify the algorithm such that computational costs are reduced while sufficiently preserving non-linearity. We conclude that the algorithm can now be applied adequately to travel times extracted from station–station cross correlations by the Reykjanes seismic network.

Author(s):  
Amin Rahimi Dalkhani ◽  
Xin Zhang ◽  
Cornelis Weemstra

Seismic travel time tomography using surface waves is an effective tool for three-dimensional crustal imaging. Historically, these surface waves are the result of active seismic sources or earthquakes. More recently, however, also surface waves retrieved through the application of seismic interferometry are exploited. Conventionally, two-step inversion algorithms are employed to solve the tomographic inverse problem. That is, a first inversion results in frequency-dependent, two-dimensional maps of phase velocity, which then serve as input for a series of independent, one-dimensional frequency-to-depth inversions. As such, a two-dimensional grid of localized depth-dependent velocity profiles are obtained. Stitching these separate profiles together subsequently yields a three-dimensional velocity model. Relatively recently, a one-step three-dimensional non-linear tomographic algorithm has been proposed. The algorithm is rooted in a Bayesian framework using Markov chains with reversible jumps, and is referred to as transdimensional tomography. Specifically, the three-dimensional velocity field is parameterized by means of a polyhedral Voronoi tessellation. In this study, we investigate the potential of this algorithm for the purpose of recovering the three-dimensional surface-wave-velocity structure from ambient noise recorded on and around the Reykjanes Peninsula, southwest Iceland. To that end, we design a number of synthetic tests that take into account the station configuration of the Reykjanes seismic network. We find that the algorithm is able to recover the 3D velocity structure at various scales in areas where station density is high. In addition, we find that the standard deviation on the recovered velocities is low in those regions. At the same time, the velocity structure is less well recovered in parts of the peninsula sampled by fewer stations. This implies that the algorithm successfully adapts model resolution to the density of rays. Also, it adapts model resolution to the amount of noise on the travel times. Because the algorithm is computationally demanding, we modify the algorithm such that computational costs are reduced while sufficiently preserving non-linearity. We conclude that the algorithm can now be applied adequately to travel times extracted from (time-averaged) station-station cross correlations by the Reykjanes seismic network.


Author(s):  
Г.Д. Етирмишли ◽  
С.Э. Казымова

При изучении скоростной структуры земной коры Азербайджана по сейсмологическим данным ис- пользовались в основном два подхода. Первый состоит в уточнении модели среды на основании наблюда- емых отклонений времен пробега волн от землетрясений относительно стандартного годографа. Второй основан на использовании разности времен пробега от источников до станции для групп близко располо- женных событий. Одномерные скоростные модели Р и S-волн были построены на основе одномерных моделей, пред- ложенных в работе Гасанова А.Г. Построение модели, расчет станционных поправок и перелокация со- бытий производились в программе Velest. Исследуемый объем до глубины 60 км был разбит на мелкие слои толщиной 2 км в интервале глубин 010 км и толщиной 510 км в интервале глубин 1060 км. В ходе исследования рассматривались сейсмологические данные о параметрах локальных землетрясений и вре- менах прихода P и S-волн зарегистрированных сетью телеметрических станций за период 20042011 гг. Анализировались данные 28-ми сейсмических станций Азербайджана, охватывающие всю исследуемую территорию. Для расчета трехмерного скоростного поля использовалась программа TomotetraFD. В этой програм- ме реализован классический сейсмотомографический метод для случая, когда источники и приемники находятся внутри исследуемого региона. Two approaches were used for investigation of crust velocity structure of Azerbaijan on the basis of seismological data. The first one consists in medium model adjustment on the basis of observed deviation of travel times of waves from earthquakes relative to standard hodograph. The second is based on difference in travel times from source to station for a group of close located stations. One dimensional velocity models of P- and S-waves were constructed on the basis of one dimensional models proposed by A.G.Gasanov. Model design, calculation of stations corrections and relocationing of events 74 Геология и геофизика Юга России, 1, 2012 were performed in Velest program. Investigating volume to depth of 60 km was divided in small layers of 2 km thickness in 0-10 km interval and 5-10 km in 10-60 km interval. Seismological data about parameters of local earthquakes registered by network of telemetric stations in 2004-2011 and arrival times of P- and S-waves were used. Data of 28 seismic stations of Azerbaijan covering all the investigating territory were analyzed. Three dimensional velocity field was calculated by means of TomotetraFD program. Classical seismotomographical method for the case when sources and receivers are located within investigating region is realized in the program.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


Geophysics ◽  
1955 ◽  
Vol 20 (1) ◽  
pp. 19-32 ◽  
Author(s):  
F. K. Levin ◽  
H. C. Hibbard

Elastic wave propagation in a two‐layer section has been studied with a solid two‐bed model and records resembling seismograms obtained for the four possible source‐detector configurations. Numerous events are identified. Among these, the shear waves are found to be surprisingly prominent. The amplitude of the ground roll falls off approximately as [Formula: see text] This is the amplitude‐range dependence expected for a surface wave. The ability of two in‐line detectors to reduce surface waves has been demonstrated.


Author(s):  
Maximilien Lehujeur ◽  
Sébastien Chevrot ◽  
Antonio Villaseñor ◽  
Emmanuel Masini ◽  
Nicolas Saspiturry ◽  
...  

We present a 3-D shear wave velocity model of the Mauleon and Arzacq basins from the surface down to 10~km depth. This model is obtained by inverting phase velocity maps for periods from 2 to 9~s measured on coherent surface wavefronts extracted from ambient seismic noise by matched filtering. This new model, which is found in good agreement with local earthquake tomography, reveals the architecture of the Mauleon and Arzacq basins which were poorly imaged by conventional reflection seismic data. Combining these new tomographic images with surface and subsurface geological information allows us to trace major orogenic structures from the basement to the surface. In the basin, the models are successfully imaging first-order folds and thrusts at kilometric scale. The velocity structure within the basement and its geometrical relationship with the base of inverted rift basins supports a progressive northward exhumation of deep crustal and mantle rocks in the hanging wall of north-vergent Pyrenean thrusts. Our tomographic models image in 3-D orogen-perpendicular structures responsible for crustal segmentation as the Saison and Barlanes transfer zones. We propose that these steep structures consist in tear faults that accommodate the deepening of the Mauleon basin basement from west to east. To the west, this basement made of former hyper-extended rift domains (including mantle rocks) is anomalously sampled within the hanging-wall of north-directed orogenic thrusts, explaining its shallow attitude and its best preservation in comparison to the eastern segment of the study area. Eastward, the vertical shift of the basement makes that the former Mauleon basin hyper-extended rift basement remained in a footwall situation in respect of orogenic thrust and was underthrust. The comparison of the tomographic models obtained with surface wave tomography and local earthquake tomography shows that each approach has its own advantages and shortcomings but also that they are very complementary in nature, which would suggest to combine them in joint inversions to further improve passive imaging of the shallow crust and sedimentary basins.


Author(s):  
Zhisong Li ◽  
Kirti Ghia ◽  
Ye Li ◽  
Zhun Fan ◽  
Lian Shen

Tidal current is a promising renewable energy source. Previous studies have investigated the influence of surface waves on tidal turbines in many aspects. However, the turbine wake development in a surface wave environment, which is crucial for power extraction in a turbine array, remains elusive. In this study, we focus on the wake evolution behind a single turbine and its interaction with surface waves. A numerical solver is developed to study the effects of surface waves on an industrial-size turbine. A case without surface wave and two cases with waves and different rotor depths are investigated. We obtain three-dimensional flow field descriptions near the free surface, around the rotor, and in the near- and far-wake. In a comparative analysis, the time-averaged and instantaneous flow fields are examined for various flow characteristics, including momentum restoration, power output, free surface elevation and vorticity dynamics. A model reduction technique is employed to identify the coherent flow structures and investigate the spatial and temporal characteristics of the wave–wake interactions. The results indicate the effect of surface waves in augmenting wake restoration and reveal the interactions between the surface waves and the wake structure, through a series of dynamic processes and the Kelvin–Helmholtz instability.


1990 ◽  
Vol 80 (2) ◽  
pp. 395-410 ◽  
Author(s):  
Glenn D. Nelson ◽  
John E. Vidale

Abstract We present a new method for locating earthquakes in a region with arbitrarily complex three-dimensional velocity structure, called QUAKE3D. Our method searches a gridded volume and finds the global minimum travel-time residual location within the volume. Any minimization criterion may be employed. The L1 criterion, which minimizes the sum of the absolute values of travel-time residuals, is especially useful when the station coverage is sparse and is more robust than the L2 criterion (which minimizes the RMS sum) employed by most earthquake location programs. On a UNIX workstation with 8 Mbytes memory, travel-time grids of size 150 by 150 by 50 are reasonably employed, with the actual geographic coverage dependent on the grid spacing. Location precision is finer than the grid spacing. Earthquake recordings at six stations in Bear Valley are located as an example, using various layered and laterally varying velocity models. Locations with QUAKE3D are nearly identical to HYPOINVERSE locations when the same flat-layered velocity model is used. For the examples presented, the computation time per event is approximately 4 times slower than HYPOINVERSE, but the computation time for QUAKE3D is dependent only on the grid size and number of stations, and independent of the velocity model complexity. Using QUAKE3D with a laterally varying velocity model results in locations that are physically more plausible and statistically more precise. Compared to flat-layered solutions, the earthquakes are more closely aligned with the surface fault trace, are more uniform in depth distribution, and the event and station travel-time residuals are much smaller. Hypocentral error bars computed by QUAKE3D are more realistic in that the trade-off of depth versus origin time is implicit in our error estimation, but ignored by HYPOINVERSE.


Sign in / Sign up

Export Citation Format

Share Document