scholarly journals Utilizing Earth Observations of Soil Freeze/Thaw Data and Atmospheric Concentrations to Estimate Cold Season Methane Emissions in the Northern High Latitudes

2021 ◽  
Vol 13 (24) ◽  
pp. 5059
Author(s):  
Maria Tenkanen ◽  
Aki Tsuruta ◽  
Kimmo Rautiainen ◽  
Vilma Kangasaho ◽  
Raymond Ellul ◽  
...  

The northern wetland methane emission estimates have large uncertainties. Inversion models are a qualified method to estimate the methane fluxes and emissions in northern latitudes but when atmospheric observations are sparse, the models are only as good as their a priori estimates. Thus, improving a priori estimates is a competent way to reduce uncertainties and enhance emission estimates in the sparsely sampled regions. Here, we use a novel way to integrate remote sensing soil freeze/thaw (F/T) status from SMOS satellite to better capture the seasonality of methane emissions in the northern high latitude. The SMOS F/T data provide daily information of soil freezing state in the northern latitudes, and in this study, the data is used to define the cold season in the high latitudes and, thus, improve our knowledge of the seasonal cycle of biospheric methane fluxes. The SMOS F/T data is implemented to LPX-Bern DYPTOP model estimates and the modified fluxes are used as a biospheric a priori in the inversion model CarbonTracker Europe-CH4. The implementation of the SMOS F/T soil state is shown to be beneficial in improving the inversion model’s cold season biospheric flux estimates. Our results show that cold season biospheric CH4 emissions in northern high latitudes are approximately 0.60 Tg lower than previously estimated, which corresponds to 17% reduction in the cold season biospheric emissions. This reduction is partly compensated by increased anthropogenic emissions in the same area (0.23 Tg), and the results also indicates that the anthropogenic emissions could have even larger contribution in cold season than estimated here.

2020 ◽  
Vol 57 (1) ◽  
pp. 68-90 ◽  
Author(s):  
Tahir S. Gadjiev ◽  
Vagif S. Guliyev ◽  
Konul G. Suleymanova

Abstract In this paper, we obtain generalized weighted Sobolev-Morrey estimates with weights from the Muckenhoupt class Ap by establishing boundedness of several important operators in harmonic analysis such as Hardy-Littlewood operators and Calderon-Zygmund singular integral operators in generalized weighted Morrey spaces. As a consequence, a priori estimates for the weak solutions Dirichlet boundary problem uniformly elliptic equations of higher order in generalized weighted Sobolev-Morrey spaces in a smooth bounded domain Ω ⊂ ℝn are obtained.


Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau-Korteweg-de Vries equation describes the wave-wave and wave-wall interactions. In this paper, we prove that, as the diffusion parameter is near zero, it coincides with the Korteweg-de Vries equation. The proof relies on deriving suitable a priori estimates together with an application of the Aubin-Lions Lemma.


2021 ◽  
Vol 183 (1) ◽  
Author(s):  
R. Alonso ◽  
V. Bagland ◽  
L. Desvillettes ◽  
B. Lods

AbstractIn this paper, we present new estimates for the entropy dissipation of the Landau–Fermi–Dirac equation (with hard or moderately soft potentials) in terms of a weighted relative Fisher information adapted to this equation. Such estimates are used for studying the large time behaviour of the equation, as well as for providing new a priori estimates (in the soft potential case). An important feature of such estimates is that they are uniform with respect to the quantum parameter. Consequently, the same estimations are recovered for the classical limit, that is the Landau equation.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Said Mesloub ◽  
Hassan Eltayeb Gadain

Abstract A priori bounds constitute a crucial and powerful tool in the investigation of initial boundary value problems for linear and nonlinear fractional and integer order differential equations in bounded domains. We present herein a collection of a priori estimates of the solution for an initial boundary value problem for a singular fractional evolution equation (generalized time-fractional wave equation) with mass absorption. The Riemann–Liouville derivative is employed. Results of uniqueness and dependence of the solution upon the data were obtained in two cases, the damped and the undamped case. The uniqueness and continuous dependence (stability of solution) of the solution follows from the obtained a priori estimates in fractional Sobolev spaces. These spaces give what are called weak solutions to our partial differential equations (they are based on the notion of the weak derivatives). The method of energy inequalities is used to obtain different a priori estimates.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Li Li ◽  
Yanping Zhou

Abstract In this work, we consider the density-dependent incompressible inviscid Boussinesq equations in $\mathbb{R}^{N}\ (N\geq 2)$ R N ( N ≥ 2 ) . By using the basic energy method, we first give the a priori estimates of smooth solutions and then get a blow-up criterion. This shows that the maximum norm of the gradient velocity field controls the breakdown of smooth solutions of the density-dependent inviscid Boussinesq equations. Our result extends the known blow-up criteria.


Sign in / Sign up

Export Citation Format

Share Document