scholarly journals Remote Sensing of Grass Response to Drought Stress Using Spectroscopic Techniques and Canopy Reflectance Model Inversion

2016 ◽  
Vol 8 (7) ◽  
pp. 557 ◽  
Author(s):  
Bagher Bayat ◽  
Christiaan van der Tol ◽  
Wouter Verhoef
2008 ◽  
Vol 112 (1) ◽  
pp. 19-34 ◽  
Author(s):  
M CHOPPING ◽  
L SU ◽  
A RANGO ◽  
J MARTONCHIK ◽  
D PETERS ◽  
...  

2010 ◽  
Vol 114 (7) ◽  
pp. 1325-1337 ◽  
Author(s):  
Scott A. Soenen ◽  
Derek R. Peddle ◽  
Ronald J. Hall ◽  
Craig A. Coburn ◽  
Forrest G. Hall

2009 ◽  
Vol 75 (4) ◽  
pp. 361-374 ◽  
Author(s):  
S.A. Soenen ◽  
D.R. Peddle ◽  
C.A. Coburn ◽  
R.J. Hall ◽  
F.G. Hall

Author(s):  
Hibiki M. Noda ◽  
Hiroyuki Muraoka ◽  
Kenlo Nishida Nasahara

AbstractThe need for progress in satellite remote sensing of terrestrial ecosystems is intensifying under climate change. Further progress in Earth observations of photosynthetic activity and primary production from local to global scales is fundamental to the analysis of the current status and changes in the photosynthetic productivity of terrestrial ecosystems. In this paper, we review plant ecophysiological processes affecting optical properties of the forest canopy which can be measured with optical remote sensing by Earth-observation satellites. Spectral reflectance measured by optical remote sensing is utilized to estimate the temporal and spatial variations in the canopy structure and primary productivity. Optical information reflects the physical characteristics of the targeted vegetation; to use this information efficiently, mechanistic understanding of the basic consequences of plant ecophysiological and optical properties is essential over broad scales, from single leaf to canopy and landscape. In theory, canopy spectral reflectance is regulated by leaf optical properties (reflectance and transmittance spectra) and canopy structure (geometrical distributions of leaf area and angle). In a deciduous broadleaf forest, our measurements and modeling analysis of leaf-level characteristics showed that seasonal changes in chlorophyll content and mesophyll structure of deciduous tree species lead to a seasonal change in leaf optical properties. The canopy reflectance spectrum of the deciduous forest also changes with season. In particular, canopy reflectance in the green region showed a unique pattern in the early growing season: green reflectance increased rapidly after leaf emergence and decreased rapidly after canopy closure. Our model simulation showed that the seasonal change in the leaf optical properties and leaf area index caused this pattern. Based on this understanding we discuss how we can gain ecophysiological information from satellite images at the landscape level. Finally, we discuss the challenges and opportunities of ecophysiological remote sensing by satellites.


2021 ◽  
Vol 13 (14) ◽  
pp. 2730
Author(s):  
Animesh Chandra Das ◽  
Ryozo Noguchi ◽  
Tofael Ahamed

Drought is one of the detrimental climatic factors that affects the productivity and quality of tea by limiting the growth and development of the plants. The aim of this research was to determine drought stress in tea estates using a remote sensing technique with the standardized precipitation index (SPI). Landsat 8 OLI/TIRS images were processed to measure the land surface temperature (LST) and soil moisture index (SMI). Maps for the normalized difference moisture index (NDMI), normalized difference vegetation index (NDVI), and leaf area index (LAI), as well as yield maps, were developed from Sentinel-2 satellite images. The drought frequency was calculated from the classification of droughts utilizing the SPI. The results of this study show that the drought frequency for the Sylhet station was 38.46% for near-normal, 35.90% for normal, and 25.64% for moderately dry months. In contrast, the Sreemangal station demonstrated frequencies of 28.21%, 41.02%, and 30.77% for near-normal, normal, and moderately dry months, respectively. The correlation coefficients between the SMI and NDMI were 0.84, 0.77, and 0.79 for the drought periods of 2018–2019, 2019–2020 and 2020–2021, respectively, indicating a strong relationship between soil and plant canopy moisture. The results of yield prediction with respect to drought stress in tea estates demonstrate that 61%, 60%, and 60% of estates in the study area had lower yields than the actual yield during the drought period, which accounted for 7.72%, 11.92%, and 12.52% yield losses in 2018, 2019, and 2020, respectively. This research suggests that satellite remote sensing with the SPI could be a valuable tool for land use planners, policy makers, and scientists to measure drought stress in tea estates.


2012 ◽  
Vol 518-523 ◽  
pp. 5697-5703
Author(s):  
Zhao Yan Liu ◽  
Ling Ling Ma ◽  
Ling Li Tang ◽  
Yong Gang Qian

The aim of this study is to assess the capability of estimating Leaf Area Index (LAI) from high spatial resolution multi-angular Vis-NIR remote sensing data of WiDAS (Wide-Angle Infrared Dual-mode Line/Area Array Scanner) imaging system by inverting the coupled radiative transfer models PROSPECT-SAILH. Based on simulations from SAILH canopy reflectance model and PROSPECT leaf optical properties model, a Look-up Table (LUT) which describes the relationship between multi-angular canopy reflectance and LAI has been produced. Then the LAI can be retrieved from LUT by directly matching canopy reflectance of six view directions and four spectral bands with LAI. The inversion results are validated by field data, and by comparing the retrieval results of single-angular remote sensing data with multi-angular remote sensing data, we can found that the view angle takes the obvious impact on the LAI retrieval of single-angular data and that high accurate LAI can be obtained from the high resolution multi-angular remote sensing technology.


Sign in / Sign up

Export Citation Format

Share Document