scholarly journals A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

Sensors ◽  
2017 ◽  
Vol 17 (12) ◽  
pp. 201 ◽  
Author(s):  
Jianbo Wu ◽  
Hui Fang ◽  
Long Li ◽  
Jie Wang ◽  
Xiaoming Huang ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 668
Author(s):  
Zhenhu Jin ◽  
Muhamad Arif Ihsan Mohd Noor Sam ◽  
Mikihiko Oogane ◽  
Yasuo Ando

Thanks to high sensitivity, excellent scalability, and low power consumption, magnetic tunnel junction (MTJ)-based tunnel magnetoresistance (TMR) sensors have been widely implemented in various industrial fields. In nondestructive magnetic flux leakage testing, the magnetic sensor plays a significant role in the detection results. As highly sensitive sensors, integrated MTJs can suppress frequency-dependent noise and thereby decrease detectivity; therefore, serial MTJ-based sensors allow for the design of high-performance sensors to measure variations in magnetic fields. In the present work, we fabricated serial MTJ-based TMR sensors and connected them to a full Wheatstone bridge circuit. Because noise power can be suppressed by using bridge configuration, the TMR sensor with Wheatstone bridge configuration showed low noise spectral density (0.19 μV/Hz0.5) and excellent detectivity (5.29 × 10−8 Oe/Hz0.5) at a frequency of 1 Hz. Furthermore, in magnetic flux leakage testing, compared with one TMR sensor, the Wheatstone bridge TMR sensors provided a higher signal-to-noise ratio for inspection of a steel bar. The one TMR sensor system could provide a high defect signal due to its high sensitivity at low lift-off (4 cm). However, as a result of its excellent detectivity, the full Wheatstone bridge-based TMR sensor detected the defect even at high lift-off (20 cm). This suggests that the developed TMR sensor provides excellent detectivity, detecting weak field changes in magnetic flux leakage testing.


2018 ◽  
Vol 54 (12) ◽  
pp. 1-14
Author(s):  
Yonggang Wang ◽  
Yuhua Cheng ◽  
Libing Bai ◽  
Jie Zhang ◽  
Haichao Yu ◽  
...  

2013 ◽  
Vol 711 ◽  
pp. 327-332
Author(s):  
Yi Su ◽  
Zhen Zhang ◽  
Tao Zhang ◽  
Ming Li Yang ◽  
Mei Lin ◽  
...  

The detection mechanism of Magnetic Flux Leakage (MFL) Method of elevator cable is proposed. Using Gauss-Mercury method to analyze the influence of different factors that lift-off value, fracture width, broken wires number and diameter and depth all that based on the collecting experimental system of MFL signals. The method can be used to optimize the detection probe design and detection signal processing.


Sign in / Sign up

Export Citation Format

Share Document