drill pipes
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 60)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
M. I. Korabelnikov ◽  
◽  
S. N. Bastrikov ◽  
N. A. Aksenova ◽  
◽  
...  

The analysis of the nonproductive time when drilling wells is conducted in the paper. it is established that the most of it is associated with the accidents and complications, with the main share (60%)-seizures. The statistical analysis of the reasons for the occurrence of seizures and the effectiveness of methods for their elimination is presented. A drill string disconnector (RBC) developed at the Tyumen Industrial University is proposed for unscrewing drill pipes and freeing them from trapped pipes. Keywords: well; drill pipes; accidents; seizure; drilling tool; drill string break.


2021 ◽  
Author(s):  
Haochen Han ◽  
Yong Zhang ◽  
Jia Chen ◽  
Qi Sun ◽  
Zhimeng Fang ◽  
...  

Abstract High-speed wired drill pipe and its corresponding communication technology not only can achieve high-speed transmission rate and high-capacity, but also can realize real-time monitoring and dual-way communication in whole section, which can prevent downhole problems effectively. As a series system, the homogeneity and robustness of these wired drill pipes are crucial. This paper focuses on how to overcome the difficulty in manufacturing process of information drill pipe and complete the validation test. In order to guarantee the quality of information drill pipe and satisfy the technological requirements of mass production, we optimize the manufacturing process and put forward reasonable test techniques. The optimizations of manufacturing process include the analysis on constant tension of pressure pipe, quantitative cutting pipe and perforation in pipe nozzle. The testing techniques includes magnetic coupling coil impedance test, high pressure test, communication performance test of both single pipe and series system. The test result can be judged and evaluated by the attenuation value of the signal attenuation test and the signal reflection waveform as well as sealing reliability. With the help of the optimization of the manufacturing process and the application of new tooling, the quality and robustness of information drill pipe is improved obviously. Pass rate in primary assembly is increased from 70% to 92%. After the second assembly, pass rate can be increased to 99.5%. Besides, the work efficiency is greatly improved and the process requirements of mass production are satisfied. The validation test can screen out the drill pipe with poor quality and performance effectively thus to improve the reliability of the whole system. By means of the improvement of manufacturing and the validation test, the comprehensive pass rate of information drill pipes is increased from 84% to 95%. During three field tests in Jilin and Daqing Oilfield, the information drill pipes functioned well and accomplished all the test tasks successfully. High-speed wired drill pipe can improve the downhole data transmission on a large margin. The theorical transmission rate can be up to 100 kbps, 10,000 times as much as the traditional mud impulse telemetry. The manufacturing optimization and test technology can guarantee the performance and realize downhole data highway.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012051
Author(s):  
V A Zhigarev ◽  
S O Zazulya ◽  
A V Minakov ◽  
A L Neverov

Abstract The paper deals with drilling fluid flow in a horizontal well during its drilling. As part of this work, rheological parameters of water-based drilling fluid with the addition of polymers and a foaming agent were used. Cuttings transport was studied at different degrees of foam aeration. Besides, the paper presents the study of the effects of drilling fluid flow, as well as the rotation of drill pipes on the cuttings transport.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012060
Author(s):  
Qingfeng Wang ◽  
Hang Chen

Abstract The research against the defect that the gripper of the rig using a traditional linkage hydraulic system always clips back to damage drill pipes when the rig starts to rotate is presented. The correcting solution of a kinetic pressure feedback system including a damper and an accumulator is described by establishing the transfer function of the linkage system and analysing major factors making the gripper to clip back. Taking the ZYWL-4000SY automatic rig for instance, the linkage hydraulic system after correction is compared with that of before in simulating analysis and the correcting solution is verified by both lab and field tests. The results show that the corrected gripper works well without hurting pipes and the rig operates in good and stable condition. The theoretical foundation and method are provided to design and test the linkage function of the composite hydraulic gripper of other similar rigs.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012043
Author(s):  
Hang Chen ◽  
Dezhong Xin

Abstract The four-stage drill pipe automatic conveying system is developed to solve the problem that the capacity of the existed drill pipe conveying system is very limited, which needs workers to add drill pipes frequently during drilling and can’t fit the development of the automatic rig. The four-stage drill pipe conveying path plan of the multidirectional automatic rig is designed based on the general conveying path and the starting point normalization, and operating mechanisms are designed, including the pipe box, the transferring device, the main and the deputy mechanical arm. This plan is helpful to reduce the height of the rig by using the room below the side of the pipe box. According to the mechanism, the conveying path is adjusted adaptively to avoid interference between the conveying system and the rig. It is verified by the theoretical calculation and the model machine test that pipes can be delivered automatically and accurately by the four-stage automatic conveying system.


2021 ◽  
Author(s):  
Ramil Ilshatovich Gubaidullin

Abstract Information technologies have long been an integral part of our lives, and the oil and gas industry has also undergone natural IT evolution. Modern technologies have allowed to automate the basic processes and structure the existing order of work, but there are still unresolved problems, one of which is monitoring the full life cycle of drill pipes and predicting the accumulation of fatigue damage. In most cases, the failure of the drill pipes is associated with fatigue destruction, which begins with microcracks as a result of exposure to variable stresses during the construction of the well (drilling). Currently, there are no effective methods to control accumulated fatigue damage or residual durability of the pipe at a given level of stress. In this regard, a system is required for a more reliable assessment of the condition of the drill pipes, which will take into account the whole list of factors influencing the rate of accumulation of fatigue damage in the body of the pipe and will allow to calculate (predict) the accumulated fatigue of the drilling pipes, using data from drilling regimes and well parameters. Understanding the mechanism of accumulation of fatigue wear, which leads to the failure of drilling pipes, makes it possible to manage this process, significantly reduce the cost of maintenance of the drilling pipe fund and reduce incidents with drilling pipes.


2021 ◽  
Vol 2045 (1) ◽  
pp. 012010
Author(s):  
J W Zhang ◽  
J C Fan

Abstract With the vigorous development of offshore oil and gas resources in the world, underwater extended reach horizontal wells have been widely used. However, due to the complicated stress and serious corrosion of drill pipes in horizontal wells, drill pipes are vulnerable to damage. After a period of service at sea, some drill tools will be placed in coastal areas for a long time. The cumulative fatigue of drilling tools is not easy to master. In the past year or two, drilling tool failure has become more and more frequent. In order to evaluate the fatigue of drilling tools in different periods and master the quantitative fatigue of drilling tools, the metal magnetic memory method has its unique advantages in detecting the stress concentration and early damage of ferromagnetic materials. The self-developed metal magnetic memory detection device is used to detect the drilling tools in the drilling tool base. The results show that the gradient peak value and ladder are used to detect the drilling tools in the drilling tool base. The average degree can be used to classify the fatigue of drilling tools, and the metal magnetic memory method is more than sensitive to various defects of drilling tools, such as penetration, internal corrosion, external corrosion, wall thickness thinning, etc.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4198
Author(s):  
Oleg Bazaluk ◽  
Andrii Velychkovych ◽  
Liubomyr Ropyak ◽  
Mykhailo Pashechko ◽  
Tetiana Pryhorovska ◽  
...  

Drilling volumes should be increased in order to increase hydrocarbon production, but this is impossible without the usage of high-quality drilling tools made of modern structural materials. The study has to analyze the design, technological and operational methods to increase the performance of drilling tools made of various materials and has highlighted prospects of technological method applications. The scientific novelty of the study consists in the development of a new analytical model of PDC drill bit–well interaction. The developed model takes into account the drill bit manufacturing errors in the form of bit body–nipple axes misalignment on the drill bit strength. This result makes it possible to determine the permissible manufacturing errors to provide safe operation of the drill bit. It is established that there is an additional transverse force that presses the drill bit to the well wall in the rock due to manufacturing errors. It is determined that the magnitude of this clamping force can be significant. The material effect has been analyzed on additional clamping force. It is established that geometric imperfection of the drill bit causes the minimal effect for the elastic system of the pipe string, which includes a calibrator and is composed of drill pipes based on composite carbon fiber material, and the maximal effect—for steel drill pipes. Polycrystalline diamond compact (PDC) drill bit and well wall contact interaction during operation in non-standard mode is considered. Non-standard stresses are determined, and the strength of the blades is estimated for different values of drilling bit manufacturing error.


2021 ◽  
Vol 1166 (1) ◽  
pp. 012017
Author(s):  
V B Kopei ◽  
O R Onysko ◽  
A G Panchuk ◽  
A P Dzhus ◽  
V R Protsiuk

Author(s):  
Marcelo Igor Lourenço ◽  
Theodoro Antoun Netto ◽  
Neilon Silva ◽  
João Carlos Plácido

Abstract This paper presents an experimental test program and numerical analyses conducted on aluminum alloy drill-pipes with two different geometries. Small-scale characterization tests were conducted to determine both the material mechanical properties and the fatigue SN curves. Full-scale fatigue tests of the components are also presented. A finite element model of the drill pipes, including the tool-joint region, was developed. The model simulates, through different load steps, the tool-joint hot assembly and the experimental loads in order to obtain the actual stress distribution during the full-scale tests. Maximum stress amplitude in the aluminum pipes was found to be coincident with the edge of the connector, at the same location where failure was observed in full-scale tests. The study revealed that such pipes present a complex stress state near their connection to the steel tool joints due to their geometry and the residual stresses induced during the assembly of the steel connectors onto the aluminum pipes. Finally, multi-axial fatigue models were calibrated with the results of the small-scale tests and applied to the stress-strain state obtained numerically. Theoretical predictions were correlated to full-scale fatigue test results.


Sign in / Sign up

Export Citation Format

Share Document