scholarly journals Integration of Low-Cost GNSS and Monocular Cameras for Simultaneous Localization and Mapping

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2193 ◽  
Author(s):  
Xiao Chen ◽  
Weidong Hu ◽  
Lefeng Zhang ◽  
Zhiguang Shi ◽  
Maisi Li
2017 ◽  
Vol 36 (12) ◽  
pp. 1363-1386 ◽  
Author(s):  
Patrick McGarey ◽  
Kirk MacTavish ◽  
François Pomerleau ◽  
Timothy D Barfoot

Tethered mobile robots are useful for exploration in steep, rugged, and dangerous terrain. A tether can provide a robot with robust communications, power, and mechanical support, but also constrains motion. In cluttered environments, the tether will wrap around a number of intermediate ‘anchor points’, complicating navigation. We show that by measuring the length of tether deployed and the bearing to the most recent anchor point, we can formulate a tethered simultaneous localization and mapping (TSLAM) problem that allows us to estimate the pose of the robot and the positions of the anchor points, using only low-cost, nonvisual sensors. This information is used by the robot to safely return along an outgoing trajectory while avoiding tether entanglement. We are motivated by TSLAM as a building block to aid conventional, camera, and laser-based approaches to simultaneous localization and mapping (SLAM), which tend to fail in dark and or dusty environments. Unlike conventional range-bearing SLAM, the TSLAM problem must account for the fact that the tether-length measurements are a function of the robot’s pose and all the intermediate anchor-point positions. While this fact has implications on the sparsity that can be exploited in our method, we show that a solution to the TSLAM problem can still be found and formulate two approaches: (i) an online particle filter based on FastSLAM and (ii) an efficient, offline batch solution. We demonstrate that either method outperforms odometry alone, both in simulation and in experiments using our TReX (Tethered Robotic eXplorer) mobile robot operating in flat-indoor and steep-outdoor environments. For the indoor experiment, we compare each method using the same dataset with ground truth, showing that batch TSLAM outperforms particle-filter TSLAM in localization and mapping accuracy, owing to superior anchor-point detection, data association, and outlier rejection.


Sensors ◽  
2017 ◽  
Vol 17 (4) ◽  
pp. 802 ◽  
Author(s):  
Elena López ◽  
Sergio García ◽  
Rafael Barea ◽  
Luis Bergasa ◽  
Eduardo Molinos ◽  
...  

2019 ◽  
Vol 9 (10) ◽  
pp. 2105 ◽  
Author(s):  
Guolai Jiang ◽  
Lei Yin ◽  
Shaokun Jin ◽  
Chaoran Tian ◽  
Xinbo Ma ◽  
...  

The method of simultaneous localization and mapping (SLAM) using a light detection and ranging (LiDAR) sensor is commonly adopted for robot navigation. However, consumer robots are price sensitive and often have to use low-cost sensors. Due to the poor performance of a low-cost LiDAR, error accumulates rapidly while SLAM, and it may cause a huge error for building a larger map. To cope with this problem, this paper proposes a new graph optimization-based SLAM framework through the combination of low-cost LiDAR sensor and vision sensor. In the SLAM framework, a new cost-function considering both scan and image data is proposed, and the Bag of Words (BoW) model with visual features is applied for loop close detection. A 2.5D map presenting both obstacles and vision features is also proposed, as well as a fast relocation method with the map. Experiments were taken on a service robot equipped with a 360° low-cost LiDAR and a front-view RGB-D camera in the real indoor scene. The results show that the proposed method has better performance than using LiDAR or camera only, while the relocation speed with our 2.5D map is much faster than with traditional grid map.


2019 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
Guangchao Hou ◽  
Qi Shao ◽  
Bo Zou ◽  
Liwen Dai ◽  
Zhe Zhang ◽  
...  

The navigation and localization of autonomous underwater vehicles (AUVs) in seawater are of the utmost importance for scientific research, petroleum engineering, search and rescue, and military missions concerning the special environment of seawater. However, there is still no general method for AUVs navigation and localization, especially in the featureless seabed. The reported approaches to solving AUVs navigation and localization problems employ an expensive inertial navigation system (INS), with cumulative errors and dead reckoning, and a high-cost long baseline (LBL) in a featureless subsea. In this study, a simultaneous localization and mapping (AMB-SLAM) online algorithm, based on acoustic and magnetic beacons, was proposed. The AMB-SLAM online algorithm is based on multiple randomly distributed beacons of low-frequency magnetic fields and a single fixed acoustic beacon for location and mapping. The experimental results show that the performance of the AMB-SLAM online algorithm has a high robustness. The proposed approach (the AMB-SLAM online algorithm) provides a low-complexity, low-cost, and high-precision online solution to the AUVs navigation and localization problem in featureless seawater environments. The AMB-SLAM online solution could enable AUVs to autonomously explore or autonomously intervene in featureless seawater environments, which would enable AUVs to accomplish fully autonomous survey missions.


Author(s):  
Gangchen Hua ◽  
◽  
Osamu Hasegawa ◽  

We describe a new feature extraction method based on the geometric structure of matched local feature points that extracts robust features from an image sequence and performs satisfactorily in highly dynamic environments. Our proposed method is more accurate than other such methods in appearance-only simultaneous localization and mapping (SLAM). Compared to position-invariant robust features [1], it is also more suitable for low-cost, single lens cameras with narrow fields of view. Testing our method in an outdoor environment at Shibuya Station. We captured images using a conventional hand-held single-lens video camera. These environments of experiments are public environments without any planned landmarks. Results have shown that the proposed method accurately obtains matches for two visual-feature sets and that stable, accurate SLAM is achieved in dynamic public environments.


Sign in / Sign up

Export Citation Format

Share Document