scholarly journals Advanced 3D Photogrammetric Surface Reconstruction of Extensive Objects by UAV Camera Image Acquisition

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2815 ◽  
Author(s):  
Michele Calì ◽  
Rita Ambu

This paper proposes a replicable methodology to enhance the accuracy of the photogrammetric reconstruction of large-scale objects based on the optimization of the procedures for Unmanned Aerial Vehicle (UAV) camera image acquisition. The relationships between the acquisition grid shapes, the acquisition grid geometric parameters (pitches, image rates, camera framing, flight heights), and the 3D photogrammetric surface reconstruction accuracy were studied. Ground Sampling Distance (GSD), the necessary number of photos to assure the desired overlapping, and the surface reconstruction accuracy were related to grid shapes, image rate, and camera framing at different flight heights. The established relationships allow to choose the best combination of grid shapes and acquisition grid geometric parameters to obtain the desired accuracy for the required GSD. This outcome was assessed by means of a case study related to the ancient arched brick Bridge of the Saracens in Adrano (Sicily, Italy). The reconstruction of the three-dimensional surfaces of this structure, obtained by the efficient Structure-From-Motion (SfM) algorithms of the commercial software Pix4Mapper, supported the study by validating it with experimental data. A comparison between the surface reconstruction with different acquisition grids at different flight heights and the measurements obtained with a 3D terrestrial laser and total station-theodolites allowed to evaluate the accuracy in terms of Euclidean distances.

2010 ◽  
Vol 14 (18) ◽  
pp. 1-25 ◽  
Author(s):  
Sandra I. Saad ◽  
Humberto R. da Rocha ◽  
Maria A. F. Silva Dias ◽  
Rafael Rosolem

Abstract The authors simulated the effects of Amazonian mesoscale deforestation in the boundary layer and in rainfall with the Brazilian Regional Atmospheric Modeling System (BRAMS) model. They found that both the area and shape (with respect to wind incidence) of deforestation and the soil moisture status contributed to the state of the atmosphere during the time scale of several weeks, with distinguishable patterns of temperature, humidity, and rainfall. Deforestation resulted in the development of a three-dimensional thermal cell, the so-called deforestation breeze, slightly shifted downwind to large-scale circulation. The boundary layer was warmer and drier above 1000-m height and was slightly wetter up to 2000-m height. Soil wetness affected the circulation energetics proportionally to the soil dryness (for soil wetness below ∼0.6). The shape of the deforestation controlled the impact on rainfall. The horizontal strips lined up with the prevailing wind showed a dominant increase in rainfall, significant up to about 60 000 km2. On the other hand, in the patches aligned in the opposite direction (north–south), there was both increase and decrease in precipitation in two distinct regions, as a result of clearly separated upward and downward branches, which caused the precipitation to increase for patches up to 15 000 km2. The authors’ estimates for the size of deforestation impacting the rainfall contributed to fill up the low spatial resolution in other previous studies.


2021 ◽  
pp. 1-8
Author(s):  
Matthew Magnani ◽  
Anatolijs Venovcevs ◽  
Stein Farstadvoll ◽  
Natalia Magnani

ABSTRACT This article shows how to record current events from an archaeological perspective. With a case study from the COVID-19 pandemic in Norway, we provide accessible tools to document broad spatial and behavioral patterns through material culture as they emerge. Stressing the importance of ethical engagement with contemporary subjects, we adapt archaeological field methods—including geolocation, photography, and three-dimensional modeling—to analyze the changing relationships between materiality and human sociality through the crisis. Integrating data from four contributors, we suggest that this workflow may engage broader publics as anthropological data collectors to describe unexpected social phenomena. Contemporary archaeological perspectives, deployed in rapid response, provide alternative readings on the development of current events. In the presented case, we suggest that local ways of coping with the pandemic may be overshadowed by the materiality of large-scale corporate and state response.


DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 190-195
Author(s):  
Felipe Dille Benevenuti ◽  
Rodrigo De Lemos Peroni

Open-pit mines generally have operational problems such as puddling and inappropriate water flow over haul roads, particularly if located in areas with high rainfall indices. These situations increase truck cycle times, promote rapid deterioration of haul-road wearing-course material, reduce productivity due to downtime and increase road maintenance. In addition, operational costs are raised as the frequency of truck maintenance and tire failures also increase. The use of a high-resolution three-dimensional elevation model, created based on Unmanned Aerial Vehicle (UAV) photogrammetry, has been shown to be an effective technique to detect anomalies in a fast and precise way. With the proposed approach, it is possible to diagnose haul-road conditions after rainfall or to anticipate the potential occurrence of such anomalies before they become a greater problem. This diagnosis can then be used to prioritize maintenance activities in open-pit mines. To describe the methodology, a case study is presented demonstrating and validating the results obtained.


2012 ◽  
Vol 170-173 ◽  
pp. 1318-1324 ◽  
Author(s):  
Bin Zhang ◽  
Bo Yang ◽  
Yu Xin Jie ◽  
Xiang Yang Kang ◽  
Li Qing Li

Reliability of water-sealed conditions is crucial to the safety of water-sealed oil-storage. With a case study of underground water-sealed oil storage cavern in Huizhou, a reliability evaluation index system of water-sealed conditions is estabilished based on the main factors influencing water-sealed conditions. Also, a zonal evaluation of water-sealed conditions of the cave rock mass ranging from 0m to -70m is made by Fuzzy Analytical Hierarchy Process. Moreover, a three-dimensional numerical seepage model is established to study the seepage laws of the groundwater before and after the cavern excavation, and the water inflow during excavation and operation can be forecasted too. The results prove that the cavern site is suitable for the construction of large-scale underground oil storage caverns for its good water-sealed conditions and high reliability.


Author(s):  
Leonardo Frizziero ◽  
Giampiero Donnici ◽  
Alfredo Liverani ◽  
Karim Dhaimini

In an increasingly competitive business world, the “time to market” of products has become a key factor for business success. There are different techniques that anticipate design mistakes and launch products on the market in less time. Among the most used methodologies in the design and definition of the requirements, quality function deployment (QFD) and design for Six Sigma (DFSS) can be used. In the prototyping phase, it is possible to address the emerging technology of additive manufacturing. Today, three-dimensional printing is already used as a rapid prototyping technique. However, the real challenge that industry is facing is the use of these machineries for large-scale production of parts, now possible with new HP multi-fusion. The aim of this article is to study the entire product development process taking advantage of the most modern models and technologies for the final realization of a case study that involves the design and prototyping of an innovative multifunctional fan (lamp, aroma diffuser and fan) through the Multi Jet Fusion of HP. To begin with, issues related to the DFSS, the QFD and their application to identify the fan requirements are explored. Once the requirements have been defined, the modern CAD design systems and the CAE systems for the validation of the case study will be analyzed and applied. Finally, HP's Multi Jet Fusion methodology and design rules for additive manufacturing will be analyzed in detail, trying to exploit all the positive aspects it offers.


2020 ◽  
pp. 52-85
Author(s):  
Leonardo Frizziero ◽  
Giampiero Donnici ◽  
Alfredo Liverani ◽  
Karim Dhaimini

In an increasingly competitive business world, the “time to market” of products has become a key factor for business success. There are different techniques that anticipate design mistakes and launch products on the market in less time. Among the most used methodologies in the design and definition of the requirements, quality function deployment (QFD) and design for Six Sigma (DFSS) can be used. In the prototyping phase, it is possible to address the emerging technology of additive manufacturing. Today, three-dimensional printing is already used as a rapid prototyping technique. However, the real challenge that industry is facing is the use of these machineries for large-scale production of parts, now possible with new HP multi-fusion. The aim of this article is to study the entire product development process taking advantage of the most modern models and technologies for the final realization of a case study that involves the design and prototyping of an innovative multifunctional fan (lamp, aroma diffuser and fan) through the Multi Jet Fusion of HP. To begin with, issues related to the DFSS, the QFD and their application to identify the fan requirements are explored. Once the requirements have been defined, the modern CAD design systems and the CAE systems for the validation of the case study will be analyzed and applied. Finally, HP's Multi Jet Fusion methodology and design rules for additive manufacturing will be analyzed in detail, trying to exploit all the positive aspects it offers.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1156
Author(s):  
Nesrine Aissa ◽  
Louis Douteau ◽  
Emmanuelle Abisset-Chavanne ◽  
Hugues Digonnet ◽  
Patrice Laure ◽  
...  

Over recent decades, tremendous advances in the field of scalable numerical tools and mesh immersion techniques have been achieved to improve numerical efficiency while preserving a good quality of the obtained results. In this context, an octree-optimized microstructure generation and domain reconstruction with adaptative meshing is presented and illustrated through a flow simulation example applied to permeability computation of micrometric fibrous materials. Thanks to the octree implementation, the numerous distance calculations in these processes are decreased, thus the computational complexity is reduced. Using the parallel environment of the ICI-tech library as a mesher and a solver, a large scale case study is performed. The study is applied to the computation of the full permeability tensor of a three-dimensional microstructure containing 10,000 fibers. The considered flow is a Stokes flow and it is solved with a stabilized finite element formulation and a monolithic approach.


Author(s):  
D. Calisi ◽  
M. Molinari

<p><strong>Abstract.</strong> The following research aims to exploit the low-cost technologies, for the survey and mapping of historical archaeology in the Roman context. The main purposes of the research is to implement a large-scale survey campaign to understand the geometry and the materiality of the artefacts examined. Three-dimensional survey from photography, allows an immediate mapping of the materiality, of the degradation and of the architectural elements characteristic of the architecture in question. From the model it is possible to obtain an image that is faithful to the reality that can be the basis for developments in many disciplines such as, for example, in the restoration project, for the material analysis and the mapping of the degradation. The applications for this type of mapping are numerous, one of those proposed in this research concerns the virtual musealisation of historical artifacts. More and more in recent years, museums are exploiting the capabilities of three-dimensional modeling software of architectural elements to interactively convey architectural elements. A methodology of work that in recent archaeological excavations is not based solely on the didactic divulgation of the history of a place, but during the excavation phase on the mapping and cataloging of uncovered finds.</p>


Sign in / Sign up

Export Citation Format

Share Document