soil dryness
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Zhang ◽  
Yonggang Liu ◽  
Xiaomin Fang ◽  
Tao Zhang ◽  
Chenguang Zhu ◽  
...  

Uplift of the Gangdese Mountains is important to the evolution of Asian monsoons and the formation of Tibetan Plateau, but its paleoaltitude before the India-Asia collision (Late Cretaceous) is less constrained so far. In this study, we investigate whether the geological records, which are indicators of soil dryness, discovered in East Asia can provide such a constraint. Through climate modeling using the Community Earth System Model version 1.2.2, it is found that the extent of dry land in East Asia is sensitive to the altitude of the Gangdese Mountains. It expands eastwards and southwards with the rise of the mountain range. Comparison of the model results with all the available geological records in this region suggests that the Gangdese Mountains had attained a height of ∼2 km in the Late Cretaceous.


Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 336-348
Author(s):  
Abdul Haris ◽  
Trisma Juwita ◽  
Rosida Nur Aziza ◽  
Hengki Sikumbang ◽  
Riki Ruli A. Siregar

The purpose of this research is to produce an optimal water distribution system for irrigation of rainfed land. The problem with conventional irrigation systems is that the water distribution process cannot be controlled and monitored automatically and in real time. The impact on water distribution becomes ineffective. The implementation of Ant Colony Optimization (ACO) is used in research as a method to determine the location or node based on the pheromone pattern of the soil dryness level at the sprinkler nodes to be distributed by the water flow, taking into account the criteria level on the soil as a trend of probability values ​​and determining the nodes according to the needs in the flow water. The results obtained from this study indicate that the data displayed is the level of dryness of each node, the volume of water in the reservoir, and the flow of water flowing. The ACO test shows the sequence of nodes that will be passed after the optimization process of water distribution in a rainfed irrigation system using the ACO method gets an error value calculated by the MAPE method of 43% so that it gets an accuracy value of 57%.


Author(s):  
Ryan Stanfield ◽  
Megan Bartlett

Plant carbon transport is controlled by a multitude of parameters both internal and external to the sugar transporting phloem tissue. Sucrose transporter kinetics, conduit hydraulic resistance, and xylem water stress are all hypothesized to impact the amount of carbon delivered to sink tissues. However, the most important traits determining carbon export under drought are not well understood, especially for species with active molecular regulation of sucrose transport. This in turn limits our ability to assess species’ resistances to phloem dysfunction under drought. Here, we use an integrated xylem-phloem-stomatal model to calculate leaf water potential from soil dryness, which is then used to determine gas exchange and phloem pressure gradients. We quantitatively compare the impacts of phloem loading kinetics, including feedbacks between loading and phloem pressure, phloem conduit resistances, and stomatal responses to water stress, on the total carbon export to sinks during drought. Regulating sucrose transporter kinetics which downregulates loading at high phloem pressures prevented runaway viscosity in the phloem sap and was the most important determinant of export rates under drought. In contrast to previous models, we found this feedback mechanism decoupled stomatal traits from phloem export efficiency during drought and increased the operational range of phloem hydraulic resistances.


Author(s):  
Hossam Altaher ◽  
Andrea Dietrich ◽  
John Novak
Keyword(s):  

2020 ◽  
Vol 6 (47) ◽  
pp. eabb7232
Author(s):  
J. K. Green ◽  
J. Berry ◽  
P. Ciais ◽  
Y. Zhang ◽  
P. Gentine

Earth system models predict that increases in atmospheric and soil dryness will reduce photosynthesis in the Amazon rainforest, with large implications for the global carbon cycle. Using in situ observations, solar-induced fluorescence, and nonlinear machine learning techniques, we show that, in reality, this is not necessarily the case: In many of the wettest parts of this region, photosynthesis and biomass tend to increase with increased atmospheric dryness, despite the associated reductions in canopy conductance to CO2. These results can be largely explained by changes in canopy properties, specifically, new leaves flushed during the dry season have higher photosynthetic capacity than the leaves they replace, compensating for the negative stomatal response to increased dryness. As atmospheric dryness will increase with climate change, our study highlights the importance of reframing how we represent the response of ecosystem photosynthesis to atmospheric dryness in very wet regions, to accurately quantify the land carbon sink.


2020 ◽  
Author(s):  
Ryan Teuling ◽  
Eva Lansu ◽  
Chiel van Heerwaarden ◽  
Annemiek Stegehuis

<p>Land-atmosphere feedbacks, in particular the response of land evaporation to vapour pressure deficit (VPD) or the dryness of the air, remain poorly understood. Here we investigate the VPD response by analysis of a large database of eddy-covariance flux observations and simulations using a conceptual model of the atmospheric boundary layer. Data analysis reveals that under high VPD, forest in particular reduces evaporation and emits more sensible heat. In contrast, grass increases evaporation and emits less sensible heat. Simulations show that this VPD feedback can induce significant temperature increases over forest of up to 2 K during heat wave conditions. It is inferred from the simulations that the effect of the VPD feedback corresponds to an apparent soil moisture depletion of more than 50%. This suggests that previous studies may have incorrectly attributed the effects of atmospheric aridity on temperature to soil dryness.</p>


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 191
Author(s):  
Shun Zou ◽  
Qianmei Zhang ◽  
Guoyi Zhou ◽  
Shizhong Liu ◽  
Guowei Chu ◽  
...  

Long-term studies have revealed that forest species composition was shifting under environment change and disturbance induced by loss of large trees. Yet, few studies explicitly analyzed their impacts on composition concurrently. To learn more about impacts of environment change and disturbance on driving forest community, we investigated shifts in functional composition over past 24 years in an old-growth subtropical forest in southern China. We analyzed nine traits that are mainly related to leaf nutrients, photosynthetic capacity, hydraulic conductivity, and drought tolerance of plants and examined hypotheses: (1) The functional composition change over time was directional instead of random fluctuation, (2) drought-tolerant species increased their abundance under soil dryness, (3) both environmental change and disturbance related to changes of functional composition significantly, and (4) initial trait values of quadrats strongly influenced their subsequent change rates in quadrat level (10 × 10 m). We found that species composition had shifted to favor species with high leaf nutrient content, high photosynthesis rate, high hydraulic conductivity, low water-use efficiency, and high drought tolerance traits, which was due to soil dryness and disturbance. These two factors explained 47–58% of quadrats’ trait value changes together. Considering rapidly increasing stem density, this pattern may indicate ecological processes of which disturbance provided numerous recruits of resource-acquisition strategy species and soil dryness conducted a selecting effect on shaping composition in the forest. Additionally, quadrats with initial trait values at the far end of change direction shifted faster in three traits, which also indicated that functional composition changes in quadrats were directional and homogenized. Our results implied that environment change and accompanied disturbance events possibly drove species composition change along a different trajectory in the subtropical forest that experienced high climatic variability.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2571 ◽  
Author(s):  
Dawd Temam ◽  
Venkatesh Uddameri ◽  
Ghazal Mohammadi ◽  
E. Annette Hernandez ◽  
Stephen Ekwaro-Osire

Intraseason and seasonal drought trends in Ethiopia were studied using a suite of drought indicators—standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), Palmer drought severity index (PDSI) and Z-index for Meher (long-rainy), Bega (dry), and Belg (short-rainy) seasons—to identify drought-causing mechanisms. Trend analysis indicated shifts in late-season Meher precipitation into Bega in the southwest and southcentral portions of Ethiopia. Droughts during Bega (October–January) are largely temperature controlled. Short-term temperature-controlled hydrologic processes exacerbate rainfall deficits during Belg (February–May) and highlight the importance of temperature- and hydrology-induced soil dryness on production of short-season crops such as tef. Droughts during Meher (June–September) are largely driven by precipitation declines arising from the narrowing of the intertropical convergence zone (ITCZ). Increased dryness during Meher has severe consequences on the production of corn and sorghum. PDSI is an aggressive indicator of seasonal droughts suggesting the low natural resilience to combat the effects of slow-acting, moisture-depleting hydrologic processes. The lack of irrigation systems in the nation limits the ability to combat droughts and improve agricultural resilience. There is an urgent need to monitor soil moisture (a key agro-hydrologic variable) to better quantify the impacts of meteorological droughts on agricultural systems in Ethiopia.


Ecosystems ◽  
2019 ◽  
Vol 23 (5) ◽  
pp. 1075-1092 ◽  
Author(s):  
Christopher Carcaillet ◽  
Mireille Desponts ◽  
Vincent Robin ◽  
Yves Bergeron

Abstract We used bioproxies from paleosoils buried within two aeolian dunes to test hypotheses concerning the origin of dry sandy boreal forests in Canada. These forests are dominated today by Pinus banksiana Lamb. One hypothesis is that too frequent Holocene stand-replacing fires would have transformed the original vegetation through extirpation of susceptible species to fire in water stress habitat. Alternatively, the ecosystem would have not changed since the dunes stabilized enough to support forest establishment. The vegetation composition and richness were determined by identification of charcoal and macroremains and radiocarbon dating for the chronology. Both sites revealed a similar history covering 6400 years. Half of the charcoal layers were less than 2500 years old in both sites, indicating that they had been subjected to the same fire history. Data indicated a stable plant composition and richness, although the percentage of Pinus decreased slightly over 4000 years (decreasing rate 1% per century). The fungus Cenococcum geophilum was consistently present, with a stochastic abundance. The vegetation grew under natural fire conditions and soil dryness since 6000 years. The ecosystem was probably not stressed by late-Holocene fires or climate changes, as the multi-millennial steady state reveals a resistant and resilient ecosystem.


Author(s):  
Dawd Temam ◽  
Venkatesh Uddameri ◽  
Ghazal Mohammadi ◽  
Elma Hernandez ◽  
Stephen Ekwaro-Osire

Ethiopian agriculture is not only affected by precipitation declines (meteorological droughts) but also soil dryness caused by temperature increases and associated long-term hydrological changes. Meteorological drought indicators (e.g., SPI), do not fully capture the water deficits in agricultural systems (i.e., agricultural droughts). An Ethiopia-wide assessment of meteorological and agricultural drought trends was carried out to characterize century-scale (1902 – 2016) changes in droughts. SPI and SPEI calculated using two-month accumulation and the Palmer Z-index were used for assessing intra-season drought trends. SPI and SPEI at six-month accumulations and PDSI were used to define full season droughts. Detrended variance corrected Mann-Kendall test was used for trend analysis during Bega (dry), Belg (short-rainy) and Meher (long-rainy) seasons. The SPEI-2 and PDSI were most aggressive in characterizing intra-season and seasonal-drought trends. There is on average 1% - 6% annual increase in dryness with the lower estimate based on precipitation declines and the upper end accounting for seasonal soil moisture dynamics. The area between 37.5° E – 42.5° E denotes a climate hot-spot. Precipitation declines in Belg along the Ethiopia-South-Sudan/Sudan border during Belg and along Eretria-Ethiopia border during Meher have the potential to exacerbate transboundary water conflicts and further threaten the food security of the region.


Sign in / Sign up

Export Citation Format

Share Document