Can the Deforestation Breeze Change the Rainfall in Amazonia? A Case Study for the BR-163 Highway Region

2010 ◽  
Vol 14 (18) ◽  
pp. 1-25 ◽  
Author(s):  
Sandra I. Saad ◽  
Humberto R. da Rocha ◽  
Maria A. F. Silva Dias ◽  
Rafael Rosolem

Abstract The authors simulated the effects of Amazonian mesoscale deforestation in the boundary layer and in rainfall with the Brazilian Regional Atmospheric Modeling System (BRAMS) model. They found that both the area and shape (with respect to wind incidence) of deforestation and the soil moisture status contributed to the state of the atmosphere during the time scale of several weeks, with distinguishable patterns of temperature, humidity, and rainfall. Deforestation resulted in the development of a three-dimensional thermal cell, the so-called deforestation breeze, slightly shifted downwind to large-scale circulation. The boundary layer was warmer and drier above 1000-m height and was slightly wetter up to 2000-m height. Soil wetness affected the circulation energetics proportionally to the soil dryness (for soil wetness below ∼0.6). The shape of the deforestation controlled the impact on rainfall. The horizontal strips lined up with the prevailing wind showed a dominant increase in rainfall, significant up to about 60 000 km2. On the other hand, in the patches aligned in the opposite direction (north–south), there was both increase and decrease in precipitation in two distinct regions, as a result of clearly separated upward and downward branches, which caused the precipitation to increase for patches up to 15 000 km2. The authors’ estimates for the size of deforestation impacting the rainfall contributed to fill up the low spatial resolution in other previous studies.

2005 ◽  
Vol 133 (4) ◽  
pp. 829-843 ◽  
Author(s):  
Milija Zupanski ◽  
Dusanka Zupanski ◽  
Tomislava Vukicevic ◽  
Kenneth Eis ◽  
Thomas Vonder Haar

A new four-dimensional variational data assimilation (4DVAR) system is developed at the Cooperative Institute for Research in the Atmosphere (CIRA)/Colorado State University (CSU). The system is also called the Regional Atmospheric Modeling Data Assimilation System (RAMDAS). In its present form, the 4DVAR system is employing the CSU/Regional Atmospheric Modeling System (RAMS) nonhydrostatic primitive equation model. The Weather Research and Forecasting (WRF) observation operator is used to access the observations, adopted from the WRF three-dimensional variational data assimilation (3DVAR) algorithm. In addition to the initial conditions adjustment, the RAMDAS includes the adjustment of model error (bias) and lateral boundary conditions through an augmented control variable definition. Also, the control variable is defined in terms of the velocity potential and streamfunction instead of the horizontal winds. The RAMDAS is developed after the National Centers for Environmental Prediction (NCEP) Eta 4DVAR system, however with added improvements addressing its use in a research environment. Preliminary results with RAMDAS are presented, focusing on the minimization performance and the impact of vertical correlations in error covariance modeling. A three-dimensional formulation of the background error correlation is introduced and evaluated. The Hessian preconditioning is revisited, and an alternate algebraic formulation is presented. The results indicate a robust minimization performance.


Tellus B ◽  
2021 ◽  
Vol 73 (1) ◽  
pp. 1-26
Author(s):  
Piotr Sekuła ◽  
Anita Bokwa ◽  
Zbigniew Ustrnul ◽  
Mirosław Zimnoch ◽  
Bogdan Bochenek

2020 ◽  
Vol 49 (D1) ◽  
pp. D38-D46
Author(s):  
Kyukwang Kim ◽  
Insu Jang ◽  
Mooyoung Kim ◽  
Jinhyuk Choi ◽  
Min-Seo Kim ◽  
...  

Abstract Three-dimensional (3D) genome organization is tightly coupled with gene regulation in various biological processes and diseases. In cancer, various types of large-scale genomic rearrangements can disrupt the 3D genome, leading to oncogenic gene expression. However, unraveling the pathogenicity of the 3D cancer genome remains a challenge since closer examinations have been greatly limited due to the lack of appropriate tools specialized for disorganized higher-order chromatin structure. Here, we updated a 3D-genome Interaction Viewer and database named 3DIV by uniformly processing ∼230 billion raw Hi-C reads to expand our contents to the 3D cancer genome. The updates of 3DIV are listed as follows: (i) the collection of 401 samples including 220 cancer cell line/tumor Hi-C data, 153 normal cell line/tissue Hi-C data, and 28 promoter capture Hi-C data, (ii) the live interactive manipulation of the 3D cancer genome to simulate the impact of structural variations and (iii) the reconstruction of Hi-C contact maps by user-defined chromosome order to investigate the 3D genome of the complex genomic rearrangement. In summary, the updated 3DIV will be the most comprehensive resource to explore the gene regulatory effects of both the normal and cancer 3D genome. ‘3DIV’ is freely available at http://3div.kr.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3982
Author(s):  
Giacomo Lazzeri ◽  
William Frodella ◽  
Guglielmo Rossi ◽  
Sandro Moretti

Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth.


2015 ◽  
Vol 15 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Jing Yu ◽  
Xianwen Bao ◽  
Yang Ding ◽  
Wei Zhang ◽  
Lingling Zhou

2018 ◽  
Vol 42 (3) ◽  
pp. 358-385 ◽  
Author(s):  
Natalie Todak ◽  
Michael D. White ◽  
Lisa M. Dario ◽  
Andrea R. Borrego

Objective: To provide guidance to criminologists for conducting experiments in light of two common discouraging factors: the belief that they are overly time-consuming and the belief that they can compromise the ethical principles of human subjects’ research. Method: A case study approach is used, based on a large-scale randomized controlled trial experiment in which we exposed participants to a 5-s TASER shock, to describe how the authors overcame ethical, methodological, and logistical difficulties. Results: We derive four pieces of advice from our experiences carrying out this experimental trial: (1) know your limitations, (2) employ pilot testing, (3) remain flexible and patient, and (4) “hold the line” to maintain the integrity of the research and the safety of human subjects. Conclusions: Criminologists have an obligation to provide the best possible evidence regarding the impact and consequences of criminal justice practices and programs. Experiments, considered by many to be the gold standard of empirical research methodologies, should be used whenever possible in order to fulfill this obligation.


2008 ◽  
Vol 22 (5) ◽  
pp. 526-549 ◽  
Author(s):  
Milena M. Parent ◽  
Benoit Séguin

The purpose of this study was to develop a model of brand creation for one-off large-scale sporting events. A case study of the 2005 Montreal FINA (Fédération Internationale de Natation) World Championships highlighted the importance of the leadership group (which must include individuals with political/networking, business/management, and sport/event skills), the context, and the nature of the event for creating the event’s brand. The importance of each aspect is suggested to vary depending on the situation. For example, the lack of an initial event brand will result in the leadership group having the greatest impact on the event’s brand creation process. Findings also highlighted differing communication paths for internal and external stakeholders. Thus, this study contributes to the literature by focusing on brand creation and its related factors instead of the management and outcomes of a brand.


2018 ◽  
Vol 64 (247) ◽  
pp. 811-821 ◽  
Author(s):  
STEFAN LIPPL ◽  
SAURABH VIJAY ◽  
MATTHIAS BRAUN

ABSTRACTDespite their importance for mass-balance estimates and the progress in techniques based on optical and thermal satellite imagery, the mapping of debris-covered glacier boundaries remains a challenging task. Manual corrections hamper regular updates. In this study, we present an automatic approach to delineate glacier outlines using interferometrically derived synthetic aperture radar (InSAR) coherence, slope and morphological operations. InSAR coherence detects the temporally decorrelated surface (e.g. glacial extent) irrespective of its surface type and separates it from the highly coherent surrounding areas. We tested the impact of different processing settings, for example resolution, coherence window size and topographic phase removal, on the quality of the generated outlines. We found minor influence of the topographic phase, but a combination of strong multi-looking during interferogram generation and additional averaging during coherence estimation strongly deteriorated the coherence at the glacier edges. We analysed the performance of X-, C- and L- band radar data. The C-band Sentinel-1 data outlined the glacier boundary with the least misclassifications and a type II error of 0.47% compared with Global Land Ice Measurements from Space inventory data. Our study shows the potential of the Sentinel-1 mission together with our automatic processing chain to provide regular updates for land-terminating glaciers on a large scale.


2021 ◽  
Author(s):  
Taha Sezer ◽  
Abubakar Kawuwa Sani ◽  
Rao Martand Singh ◽  
David P. Boon

<p>Groundwater heat pumps (GWHP) are an environmentally friendly and highly efficient low carbon heating technology that can benefit from low-temperature groundwater sources lying in the shallow depths to provide heating and cooling to buildings. However, the utilisation of groundwater for heating and cooling, especially in large scale (district level), can create a thermal plume around injection wells. If a plume reaches the production well this may result in a decrease in the system performance or even failure in the long-term operation. This research aims to investigate the impact of GWHP usage in district-level heating by using a numerical approach and considering a GWHP system being constructed in Colchester, UK as a case study, which will be the largest GWHP system in the UK. Transient 3D simulations have been performed pre-construction to investigate the long-term effect of injecting water at 5°C, into a chalk bedrock aquifer. Modelling suggests a thermal plume develops but does not reach the production wells after 10 years of operation. The model result can be attributed to the low hydraulic gradient, assumed lack of interconnecting fractures, and large (>500m) spacing between the production and injection wells. Model validation may be possible after a period operational monitoring.</p>


Sign in / Sign up

Export Citation Format

Share Document