scholarly journals Application of Time-Domain Full Waveform Inversion to Cross-Hole Radar Data Measured at Xiuyan Jade Mine, China

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3114 ◽  
Author(s):  
Sixin Liu ◽  
Xintong Liu ◽  
Xu Meng ◽  
Lei Fu ◽  
Qi Lu ◽  
...  

Xiuyan Jade, produced in Xiuyan County, Liaoning Province, China is one of the four famous jade in China. King Jade, which is deemed the largest jade body of the world, was broken out from a hill. The local government planned to build a tourism site based on the jade culture there. The purpose of the investigation was to evaluate the stability of subsurface foundation, and the possible positions of mined-out zones to prevent the further rolling of the jade body. Cross-hole radar tomography is the key technique in the investigation. Conventional travel time and attenuation tomography based on ray tracing theory cannot provide high-resolution images because only a fraction of the measured information is used in the inversion. Full-waveform inversion (FWI) can provide high-resolution permittivity and conductivity images because it utilizes all the information provided by the radar signals. We deduce the gradient expression of the time-domain FWI with respect to the permittivity and conductivity using a method that is different from that of the previous work and realize the FWI algorithm that can simultaneously update the permittivity and conductivity by using the conjugate gradient method. Inverted results from synthetic data show that time-domain FWI can significantly improve the resolution compared with the ray-based tomogram methods. FWI can distinguish targets that are as small as one-half to one-third wavelength and the inverted physical values are closer to the real ones than those provided by the ray tracing method. We use the FWI algorithm to the field data measured at Xiuyan jade mine. Both the inverted permittivity and conductivity can comparably delineate four mined-out zones, which exhibit low-permittivity and low-conductivity characteristics. Furthermore, the locations of the interpreted mined-out zones are in good agreement with the existing mining channels recorded by geological data.

Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. J53-J64 ◽  
Author(s):  
Jacques R. Ernst ◽  
Alan G. Green ◽  
Hansruedi Maurer ◽  
Klaus Holliger

Crosshole radar tomography is a useful tool in diverse investigations in geology, hydrogeology, and engineering. Conventional tomograms provided by standard ray-based techniques have limited resolution, primarily because only a fraction of the information contained in the radar data (i.e., the first-arrival times and maximum first-cycle amplitudes) is included in the inversion. To increase the resolution of radar tomograms, we have developed a versatile full-waveform inversion scheme that is based on a finite-difference time-domain solution of Maxwell’s equations. This scheme largely accounts for the 3D nature of radar-wave propagation and includes an efficient method for extracting the source wavelet from the radar data. After demonstrating the potential of the new scheme on two realistic synthetic data sets, we apply it to two crosshole field data sets acquired in very different geologic/hydrogeologic environments. These are the first applications of full-waveform tomography to observed crosshole radar data. The resolution of all full-waveform tomograms is shown to be markedly superior to that of the associated ray tomograms. Small subsurface features a fraction of the dominant radar wavelength and boundaries between distinct geological/hydrological units are sharply imaged in the full-waveform tomograms.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE135-VE144 ◽  
Author(s):  
Denes Vigh ◽  
E. William Starr

Prestack depth migration has been used for decades to derive velocity distributions in depth. Numerous tools and methodologies have been developed to reach this goal. Exploration in geologically more complex areas exceeds the abilities of existing methods. New data-acquisition and data-processing methods are required to answer these new challenges effectively. The recently introduced wide-azimuth data acquisition method offers better illumination and noise attenuation as well as an opportunity to more accurately determine velocities for imaging. One of the most advanced tools for depth imaging is full-waveform inversion. Prestack seismic full-waveform inversion is very challenging because of the nonlinearity and nonuniqueness of the solution. Combined with multiple iterations of forward modeling and residual wavefield back propagation, the method is computer intensive, especially for 3D projects. We studied a time-domain, plane-wave implementation of 3D waveform inversion. We found that plane-wave gathers are an attractive input to waveform inversion with dramatically reduced computer run times compared to traditional shot-gather approaches. The study was conducted on two synthetic data sets — Marmousi2 and SMAART Pluto 1.5 — and a field data set. The results showed that a velocity field can be reconstructed well using a multiscale time-domain implementation of waveform inversion. Although the time-domain solution does not take advantage of wavenumber redundancy, the method is feasible on current computer architectures for 3D surveys. The inverted velocity volume produces a quality image for exploration geologists by using numerous iterations of waveform inversion.


2019 ◽  
Vol 11 (16) ◽  
pp. 1839
Author(s):  
Xu Meng ◽  
Sixin Liu ◽  
Yi Xu ◽  
Lei Fu

Full waveform inversion (FWI) can yield high resolution images and has been applied in Ground Penetrating Radar (GPR) for around 20 years. However, appropriate selection of the initial models is important in FWI because such an inversion is highly nonlinear. The conventional way to obtain the initial models for GPR FWI is ray-based tomogram inversion which suffers from several inherent shortcomings. In this paper, we develop a Laplace domain waveform inversion to obtain initial models for the time domain FWI. The gradient expression of the Laplace domain waveform inversion is deduced via the derivation of a logarithmic object function. Permittivity and conductivity are updated by using the conjugate gradient method. Using synthetic examples, we found that the value of the damping constant in the inversion cannot be too large or too small compared to the dominant frequency of the radar data. The synthetic examples demonstrate that the Laplace domain waveform inversion provide slightly better initial models for the time domain FWI than the ray-based inversion. Finally, we successfully applied the algorithm to one field data set, and the inverted results of the Laplace-based FWI show more details than that of the ray-based FWI.


Sign in / Sign up

Export Citation Format

Share Document