scholarly journals Multitarget Tracking Algorithm Using Multiple GMPHD Filter Data Fusion for Sonar Networks

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3193 ◽  
Author(s):  
Xueli Sheng ◽  
Yang Chen ◽  
Longxiang Guo ◽  
Jingwei Yin ◽  
Xiao Han

Multitarget tracking algorithms based on sonar usually run into detection uncertainty, complex channel and more clutters, which cause lower detection probability, single sonar sensors failing to measure when the target is in an acoustic shadow zone, and computational bottlenecks. This paper proposes a novel tracking algorithm based on multisensor data fusion to solve the above problems. Firstly, under more clutters and lower detection probability condition, a Gaussian Mixture Probability Hypothesis Density (GMPHD) filter with computational advantages was used to get local estimations. Secondly, this paper provided a maximum-detection capability multitarget track fusion algorithm to deal with the problems caused by low detection probability and the target being in acoustic shadow zones. Lastly, a novel feedback algorithm was proposed to improve the GMPHD filter tracking performance, which fed the global estimations as a random finite set (RFS). In the end, the statistical characteristics of OSPA were used as evaluation criteria in Monte Carlo simulations, which showed this algorithm’s performance against those sonar tracking problems. When the detection probability is 0.7, compared with the GMPHD filter, the OSPA mean of two sensor and three sensor fusion was decrease almost by 40% and 55%, respectively. Moreover, this algorithm successfully tracks targets in acoustic shadow zones.

Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 741
Author(s):  
Zhang ◽  
Li ◽  
Sun

The detection probability is an important parameter in multisensor multitarget tracking. The existing multisensor multi-Bernoulli (MS-MeMBer) filter and multisensor cardinalized probability hypothesis density (MS-CPHD) filter require that detection probability is a priori. However, in reality, the value of the detection probability is constantly changing due to the influence of sensors, targets, and other environmental characteristics. Therefore, to alleviate the performance deterioration caused by the mismatch of the detection probability, this paper applies the inverse gamma Gaussian mixture (IGGM) distribution to both the MS-MeMBer filter and the MS-CPHD filter. Specifically, the feature used for detection is assumed to obey the inverse gamma distribution and is statistically independent of the target’s spatial position. The feature is then integrated into the target state to iteratively estimate the target detection probability as well as the motion state. The experimental results demonstrate that the proposed methods can achieve a better filtering performance in scenarios with unknown and changing detection probability. It is also shown that the distribution of the sensors has a vital influence on the filtering accuracy, and the filters perform better when sensors are dispersed in the monitoring area.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Huadong Wang ◽  
Shi Dong

In order to improve the reliability of measurement data, the multisensor data fusion technology has progressed greatly in improving the accuracy of measurement data. This paper utilizes the real-time, recursive, and optimal estimation characteristics of unscented Kalman filter (UKF), as well as the unique advantages of multiscale wavelet transform decomposition in data analysis to effectively integrate observational data from multiple sensors. A new multiscale UKF-based multisensor data fusion algorithm is proposed by combining the UKF with multiscale signal analysis. Firstly, model-based UKF is introduced into the multiple sensors, and then the model is decomposed at multiple scales onto the coarse scale with wavelets. Next, signals decomposed from fine to coarse scales are adjusted using the denoised observational data from corresponding sensors and reconstructed with wavelets to obtain the fused signals. Finally, the processed data are fused using adaptive weighted fusion algorithm. Comparison of simulation and experimental results shows that the proposed method can effectively improve the antijamming capability of the measurement system and ensure the reliability and accuracy of sensor measurement system compared to the use of data fusion algorithm alone.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Guo Chen ◽  
Zhigui Liu ◽  
Guang Yu ◽  
Jianhong Liang

Multisensor data generalized fusion algorithm is a kind of symbolic computing model with multiple application objects based on sensor generalized integration. It is the theoretical basis of numerical fusion. This paper aims to comprehensively review the generalized fusion algorithms of multisensor data. Firstly, the development and definition of multisensor data fusion are analyzed and the definition of multisensor data generalized fusion is given. Secondly, the classification of multisensor data fusion is discussed, and the generalized integration structure of multisensor and its data acquisition and representation are given, abandoning the research characteristics of object oriented. Then, the principle and architecture of multisensor data fusion are analyzed, and a generalized multisensor data fusion model is presented based on the JDL model. Finally, according to the multisensor data generalized fusion architecture, some related theories and methods are reviewed, and the tensor-based multisensor heterogeneous data generalized fusion algorithm is proposed, and the future work is prospected.


1990 ◽  
Author(s):  
Hamid Rasoulian ◽  
Wiley E. Thompson ◽  
Louis F. Kazda ◽  
Ramon Parra-Loera

Sign in / Sign up

Export Citation Format

Share Document