scholarly journals A Combined Ray Tracing Method for Improving the Precision of the USBL Positioning System in Smart Ocean

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3586 ◽  
Author(s):  
Jian Li ◽  
Qi Gu ◽  
Ying Chen ◽  
Guiqing Sun ◽  
Haocai Huang

The ultra-short baseline positioning system (USBL) has the advantages of flexible application and easy installation, and it plays an extremely important role in the underwater positioning and communication. The error of the USBL in underwater positioning is mainly caused by a ranging error due to ray tracing, a phase difference error of the USBL, and acoustic noise in the underwater communication. Most of these errors are related to the changes in the sound speed during its propagation through the ocean. Therefore, when using the USBL for underwater detection, it is necessary to correct the sound speed profile in the detection area and optimize the ray tracing. Taking into account the actual conditions, this paper aims at correcting the model of underwater sound speed propagation and improving the tracking method of sound lines when the marine environment in the shallow sea area changes. This paper proposes a combined ray tracing method that can adaptively determine whether to use the constant sound speed ray tracing method or the equal gradient ray tracing method. The theoretical analysis and simulation results show that the proposed method can effectively reduce the error of slant distance in USBL compared with the traditional acoustic tracking method and the constant sound speed ray tracing method. The proposed sound ray correction algorithm solves the contradiction between the number of iterations and the reduction of positioning error and has engineering application value.

Author(s):  
Bagus Septyanto ◽  
Dian Nurdiana ◽  
Sitti Ahmiatri Saptari

In general, surface positioning using a global satellite navigation system (GNSS). Many satellites transmit radio signals to the surface of the earth and it was detected by receiver sensors into a function of position and time. Radio waves really bad when spreading in water. So, the underwater positioning uses acoustic wave. One type of underwater positioning is USBL. USBL is a positioning system based on measuring the distance and angle. Based on distance and angle, the position of the target in cartesian coordinates can be calculated. In practice, the effect of ship movement is one of the factors that determine the accuracy of the USBL system. Ship movements like a pitch, roll, and orientation that are not defined by the receiver could changes the position of the target in X, Y and Z coordinates. USBL calibration is performed to detect an error angle. USBL calibration is done by two methods. In USBL calibration Single Position obtained orientation correction value is 1.13 ̊ and a scale factor is 0.99025. For USBL Quadrant calibration, pitch correction values is -1.05, Roll -0.02 ̊, Orientation 6.82 ̊ and scale factor 0.9934 are obtained. The quadrant calibration results deccrease the level of error position to 0.276 - 0.289m at a depth of 89m and 0.432m - 0.644m at a depth of 76m


2000 ◽  
Vol 54 (3) ◽  
pp. 46-56
Author(s):  
K. Uchida ◽  
D. Da ◽  
C. K. Lee ◽  
T. Matsunaga ◽  
T. Imai ◽  
...  

Author(s):  
Wei Huang ◽  
Mingliu Liu ◽  
Deshi Li ◽  
Feng Yin ◽  
Haole Chen ◽  
...  

Energy ◽  
2021 ◽  
Vol 228 ◽  
pp. 120438
Author(s):  
Asher J. Hancock ◽  
Laura B. Fulton ◽  
Justin Ying ◽  
Corey E. Clifford ◽  
Shervin Sammak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document