underwater positioning
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 23)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yangmei Zhang

This paper is aimed at studying underwater object detection and positioning. Objects are detected and positioned through an underwater scene segmentation-based weak object detection algorithm and underwater positioning technology based on the three-dimensional (3D) omnidirectional magnetic induction smart sensor. The proposed weak object detection involves a predesigned U-shaped network- (U-Net-) architectured image segmentation network, which has been improved before application. The key factor of underwater positioning technology based on 3D omnidirectional magnetic induction is the magnetic induction intensity. The results show that the image-enhanced object detection method improves the accuracy of Yellow Croaker, Goldfish, and Mandarin Fish by 3.2%, 1.5%, and 1.6%, respectively. In terms of sensor positioning technology, under the positioning Signal-to-Noise Ratio (SNR) of 15 dB and 20 dB, the curve trends of actual distance and positioning distance are consistent, while SNR = 10   dB , the two curves deviate greatly. The research conclusions read as follows: an underwater scene segmentation-based weak object detection method is proposed for invalid underwater object samples from poor labeling, which can effectively segment the background from underwater objects, remove the negative impact of invalid samples, and improve the precision of weak object detection. The positioning model based on a 3D coil magnetic induction sensor can obtain more accurate positioning coordinates. The effectiveness of 3D omnidirectional magnetic induction coil underwater positioning technology is verified by simulation experiments.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2089
Author(s):  
Łukasz Lemieszewski ◽  
Aleksandra Radomska-Zalas ◽  
Andrzej Perec ◽  
Larisa Dobryakova ◽  
Evgeny Ochin

The need of precision for underwater positioning and navigation should be considered as strict as those present at the sea surface. GNSS provides 4D positioning (XYZT). Each satellite contains two rubidium and two cesium atomic clocks. They are monitored by an atomic clock on the ground, and the entire system is constantly calibrated to a universal time standard, Coordinated Universal Time (UTC). GNSS receivers determine the time T to within 100 billionths of a second without the cost of owning, operating and maintaining an atomic clock. Of particular importance is the measurement of XYZT underwater. We assume that some surface vehicles are additionally equipped with an Acoustic Speaker, which transmits the XY coordinates of the vessel with an indication of accuracy and the time T of the vessel. Submarine vehicles determine their position by help of acoustic signals from several surface acoustic sources using the Time of Arrival (ToA) algorithm. Detection of Spoofing for the Dynamic Underwater Positioning Systems (DUPS) based on vehicles retrofitted with acoustic speakers is very actual problem. Underwater spoofing works as follows: N acoustic speaker on N ships transmit the coordinates . GNSS signals are susceptible to interference due to their very low power (−130 dBm) and can be easily jammed by other sources, which may be accidental or intentional. The spoofer, like an underwater vehicle, receives these signals from N vessels, distorts them and transmits with increased acoustic power. All receivers into the spoofed area will calculate the same coordinates, so the indication of the coincidence of coordinates from a pair of diversity receivers is an indication of spoofing detection.


2021 ◽  
Vol 11 (17) ◽  
pp. 7777
Author(s):  
Haoqian Huang ◽  
Jiacheng Tang ◽  
Bo Zhang

The underwater environment is complex and changeable, and it is hard but irreplaceable to research the time-varying noises that have a significant influence on navigation information determination with higher accuracy. To solve the problems of the inaccurate noise information, this paper proposes a novel statistical regression adaptive Kalman filtering (SRAKF) algorithm that makes better use of the merits of the expectation maximization and unscented transformation. The SRAKF is verified from theoretical perspectives, and meanwhile, the stability and accuracy of the algorithm are evaluated by real lake trials. Relying on the properties of the statistical linear regression and the positioning parameter estimation of latent variables, higher precise positioning parameters can be acquired by the SRAKF, even for the measurement noise values with great variation. Hence, the performance of SRAKF is more useful in underwater positioning applications than other traditional algorithms due to its stronger robustness and higher accuracy.


2021 ◽  
pp. 1-17
Author(s):  
Yixu Liu ◽  
Xiushan Lu ◽  
Shuqiang Xue ◽  
Shengli Wang

Abstract The layout of seafloor datum points is the key to constructing the seafloor geodetic datum network, and a reliable underwater positioning model is the prerequisite for achieving precise deployment of the datum points. The traditional average sound speed positioning model is generally adopted in underwater positioning due to its simple and efficient algorithm, but it is sensitive to incident angle related errors, which lead to unreliable positioning results. Based on the relationship between incident angle and sound speed, the sound speed function model considering the incident angle has been established. Results show that the accuracy of positioning is easily affected by errors related to the incident angle; the new average sound speed correction model based on the incident angle proposed in this paper is used to significantly improve the underwater positioning accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2218
Author(s):  
Sizhen Bian ◽  
Peter Hevesi ◽  
Leif Christensen ◽  
Paul Lukowicz

Autonomous underwater vehicles (AUV) are seen as an emerging technology for maritime exploration but are still restricted by the availability of short range, accurate positioning methods necessary, e.g., when docking remote assets. Typical techniques used for high-accuracy positioning in indoor use case scenarios, such as systems using ultra-wide band radio signals (UWB), cannot be applied for underwater positioning because of the quick absorption of the positioning medium caused by the water. Acoustic and optic solutions for underwater positioning also face known problems, such as the multi-path effects, high propagation delay (acoustics), and environmental dependency. This paper presents an oscillating magnetic field-based indoor and underwater positioning system. Unlike those radio wave-based positioning modalities, the magnetic approach generates a bubble-formed magnetic field that will not be deformed by the environmental variation because of the very similar permeability of water and air. The proposed system achieves an underwater positioning mean accuracy of 13.3 cm in 2D and 19.0 cm in 3D with the multi-lateration positioning method and concludes the potential of the magnetic field-based positioning technique for underwater applications. A similar accuracy was also achieved for various indoor environments that were used to test the influence of cluttered environment and of cross environment. The low cost and power consumption system is scalable for extensive coverage area and could plug-and-play without pre-calibration.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bo Guo ◽  
Jianye Ma ◽  
Cui Wang

Extended Kalman filter (EKF) plays an important role in the acoustic signal processing of underwater positioning. However, accumulative errors and model inaccuracies lead to divergence. Then, attenuation memory EKF is created in response to this issue which needs to manually select all or part of the parameters. Thus, a dynamic-weighted attenuation memory EKF is proposed. Firstly, several underwater positioning simulations under different conditions are carried out. Results show, with the change of parameter conditions in positioning, the ideal attenuation coefficient changes between 0.5 and 1, but it is difficult to express it in function formula or statistical form. Secondly, a dynamic selection method of attenuation factor is designed. In the later contrast simulation, the proposed method has improved the positioning performance compared with the existing attenuation memory filter algorithm. Finally, the results of physical model verification experiment show that the dynamic-weighted attenuation memory EKF algorithm not only suppresses divergence better but also avoids the subjectivity of attenuation coefficient selection to a certain extent.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 143
Author(s):  
Qinghua Luo ◽  
Xiaozhen Yan ◽  
Chunyu Ju ◽  
Yunsai Chen ◽  
Zhenhua Luo

The ultra-short baseline underwater positioning is one of the most widely applied methods in underwater positioning and navigation due to its simplicity, efficiency, low cost, and accuracy. However, there exists environmental noise, which has negative impacts on the positioning accuracy during the ultra-short baseline (USBL) positioning process, which results in a large positioning error. The positioning result may lead to wrong decision-making in the latter processing. So, it is necessary to consider the error sources, and take effective measurements to minimize the negative impact of the noise. In our work, we propose a USBL positioning system with Kalman filtering to improve the positioning accuracy. In this system, we first explore a new kind of element array to accurately capture the acoustic signals from the object. We then organically combine the Kalman filters with the array elements to filter the acoustic signals, using the minimum mean-square error rule to obtain accurate acoustic signals. We got the high-precision phase difference information based on the non-equidistant quaternary original array and the phase difference acquisition mechanism. Finally, on account of the obtained accurate phase difference information and position calculation, we determined the coordinates of the underwater target. Comprehensive evaluation results demonstrate that our proposed USBL positioning method based on the Kalman filter algorithm can effectively enhance the positioning accuracy.


Sign in / Sign up

Export Citation Format

Share Document