scholarly journals New Approach of High Sensitivity Techniques Using Collective Detection Method with Multiple GNSS Receivers

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3690 ◽  
Author(s):  
Maherizo Andrianarison ◽  
René Landry

The Collective Detection (CD) technique is a promising approach to meet the requirements for signal acquisition in GNSS-harsh environments. The CD approach has been proposed because of its potential to operate as both a direct positioning method and a high-sensitivity acquisition method. This paper is dedicated to the development of a new CD architecture for processing satellite signals in challenging environments. It proposes the best signal acquisition method used according to the reception conditions of the different receivers that can assist the user in difficulty. Knowing that the CD approach is beneficial in the case where the maximum of satellite signals can be combined, the proposed approach consists in choosing the best receiver(s) from several connected receivers to serve as a reference station, as smart cooperative navigation concept. New metrics of the CD with optimal weighting of visible satellites are exploited. Analysis of optimization method in order to use better satellites according to some defined parameters (elevation, C / N 0 , and GDOP) were carried out. Real GPS L1 C/A signals are exploited to analyze the efficiency of the proposed approach. A comparison of the results through the accumulation of some good satellites among all visible satellites have shown the effectiveness of this method.

2021 ◽  
Vol 10 (7) ◽  
pp. 437
Author(s):  
Hongxia Qi ◽  
Yunjia Wang ◽  
Jingxue Bi ◽  
Hongji Cao ◽  
Shenglei Xu

Floor positioning is an important aspect of indoor positioning technology, which is closely related to location-based services (LBSs). Currently, floor positioning technologies are mainly based on radio signals and barometric pressure. The former are impacted by the multipath effect, rely on infrastructure support, and are limited by different spatial structures. For the latter, the air pressure changes with the temperature and humidity, the deployment cost of the reference station is high, and different terminal models need to be calibrated in advance. In view of these issues, here, we propose a novel floor positioning method based on human activity recognition (HAR), using smartphone built-in sensor data to classify pedestrian activities. We obtain the degree of the floor change according to the activity category of every step and determine whether the pedestrian completes floor switching through condition and threshold analysis. Then, we combine the previous floor or the high-precision initial floor with the floor change degree to calculate the pedestrians’ real-time floor position. A multi-floor office building was chosen as the experimental site and verified through the process of alternating multiple types of activities. The results show that the pedestrian floor position change recognition and location accuracy of this method were as high as 100%, and that this method has good robustness and high universality. It is more stable than methods based on wireless signals. Compared with one existing HAR-based method and air pressure, the method in this paper allows pedestrians to undertake long-term static or round-trip activities during the process of going up and down the stairs. In addition, the proposed method has good fault tolerance for the misjudgment of pedestrian actions.


2018 ◽  
Vol 29 (2) ◽  
pp. 236-243 ◽  
Author(s):  
Jianing WANG ◽  
◽  
Baowang LIAN ◽  
Zhe XUE ◽  

2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Ziqiang Zhang ◽  
Bin Chang ◽  
Jing Zhao ◽  
Qi Yang ◽  
Xingkun Liu

A jumping leg with one degree of freedom (DOF) is characterized by high rigidity and simple control. However, robots are prone to motion failure because they might tip over during the jumping process due to reduced mechanism flexibility. Mechanism design, configuration optimization, and experimentation were conducted in this study to achieve jumping stability for a bioinspired robot. With locusts as the imitated object, a one-DOF jumping leg mechanism was designed taking Stephenson-type six-bar mechanism as reference, and kinematic and dynamic models were established. The rotation angle of the trunk and the total inertia moment were used as stability criteria, and the sensitivity of different links to the target was analyzed in detail. With high-sensitivity link lengths as the optimization parameters, a configuration optimization method based on the particle swarm optimization algorithm was proposed in consideration of the different constraint conditions of the jumping leg mechanism. Optimization results show that this method can considerably improve optimization efficiency. A prototype of the robot was developed, and the experiment showed that the optimized trunk rotation angle and total inertia moment were within a small range and can thus meet the requirements of jumping stability. This work provides a reference for the design of jumping and legged robots.


2013 ◽  
Vol 433-435 ◽  
pp. 519-526
Author(s):  
Chun Fen Guo ◽  
A Ying Wei ◽  
Xue Zhen Cheng

For instrument multifunction, this article introduces a new multi-parameter environmental monitoring instrument. This article chooses the electrochemistry gas sensor as signal acquisition element which has the characteristics of small volume, high sensitivity. Using a single crystal designed as PM2.5 detection module. It can measure SO2NO2COH2S and PM2.5 meanwhile. It simply and exactly achieved the measurement of every parameter by designing related circuits. The communication between computer and Labview was realized by serial port. This instrument has high accuracy, small volume, and higher performance price ratio and so on.


Sign in / Sign up

Export Citation Format

Share Document