scholarly journals Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2548 ◽  
Author(s):  
Mutiu Adesina Adegboye ◽  
Wai-Keung Fung ◽  
Aditya Karnik

Pipelines are widely used for the transportation of hydrocarbon fluids over millions of miles all over the world. The structures of the pipelines are designed to withstand several environmental loading conditions to ensure safe and reliable distribution from point of production to the shore or distribution depot. However, leaks in pipeline networks are one of the major causes of innumerable losses in pipeline operators and nature. Incidents of pipeline failure can result in serious ecological disasters, human casualties and financial loss. In order to avoid such menace and maintain safe and reliable pipeline infrastructure, substantial research efforts have been devoted to implementing pipeline leak detection and localisation using different approaches. This paper discusses pipeline leakage detection technologies and summarises the state-of-the-art achievements. Different leakage detection and localisation in pipeline systems are reviewed and their strengths and weaknesses are highlighted. Comparative performance analysis is performed to provide a guide in determining which leak detection method is appropriate for particular operating settings. In addition, research gaps and open issues for development of reliable pipeline leakage detection systems are discussed.

Author(s):  
Mutiu Adesina Adegboye ◽  
Wai-Keung Fung ◽  
Aditya Karnik

Pipelines are widely used for transportation of hydrocarbon fluids over millions of miles over the world. The structures of the pipelines are designed to withstand several environmental loading conditions to ensure safe and reliable distribution from point of production to the shore or distributions deport. However, leaks in pipeline networks are one of the major causes of innumerable losses in pipeline operators and nature. Incidents of pipeline failure can result in serious ecological disasters, human casualties and financial loss. In order to avoid such menace and maintain safe and reliable pipeline infrastructure, substantial research efforts have been devoted to implementing pipeline leak detection and localisation using different approaches. This paper discusses on pipelines leakage detection technologies and summarises the state-of-the-art achievements. Different leakage detection and localisation in pipeline systems are reviewed and their strengths and weaknesses are highlighted. Comparative performance analysis is performed to provide a guide in determining which leak detection method is appropriate for particular operating settings. In addition, research gaps and open issues for development of reliable pipeline leakage detection systems are discussed.


Author(s):  
Renan Martins Baptista

This paper describes procedures developed by PETROBRAS Research & Development Center to assess a software-based leak detection system (LDS) for short pipelines. These so-called “Low Complexity Pipelines” are short pipeline segments with single-phase liquid flow. Detection solutions offered by service companies are frequently designed for large pipeline networks, with batches and multiple injections and deliveries. Such solutions are sometimes impractical for short pipelines, due to high cost, long tuning procedures, complex instrumentation and substantial computing requirements. The approach outlined here is a corporate approach that optimizes a LDS for shorter lines. The two most popular implemented techniques are the Compensated Volume Balance (CVB), and the Real Time Transient Model (RTTM). The first approach is less accurate, reliable and robust when compared to the second. However, it can be cheaper, simpler, faster to install and very effective, being marginally behind the second one, and very cost-efective. This paper describes a procedure to determine whether one can use a CVB in a short pipeline.


Author(s):  
Gerhard Geiger

Pipelines are the least expensive and most efficient way to move liquids and gases, but there is a high potential risk of danger in case of a leak. This paper therefore describes pipeline leak detection technologies and emergency shutdown protocols to ensure reliable and safe pipeline operations. The main focus of this paper is on internal leak detection systems which use existing field instrumentation and usually run continuously. External leak detection systems using dedicated measurement equipment such as probes and sensor cables are briefly considered. Particular emphasis will be placed on model-based techniques such as the Real Time Transient Model (RTTM) and Extended Real Time Transient Model (E-RTTM) methods. In case of a leak, appropriate emergency actions are required to limit the consequences and in particular to protect people and the environment. The last part of the paper therefore is devoted to emergency shut-down protocols.


2013 ◽  
Vol 353-356 ◽  
pp. 3067-3071
Author(s):  
Jiao Na Jiao ◽  
Jian Jun Yu

Researches on leak detection system of gas network are significant to fault pipelines diagnosis. In the daily operation of city gas pipeline network, pipeline leakage is the most risky failure type. This paper attempts to review and analyze the existing gas network leak detection systems, meanwhile, design a new kind of leak detection system for daily monitoring and leakage detection of gas network. The greatest advantage of this system is to be able to do all kinds of leak experimental research, especially has great reference value for the leak detection task in colleges and universities.


2016 ◽  
Vol 15 (9) ◽  
pp. 2063-2074
Author(s):  
Pedro Rosas Quiterio ◽  
Florencio Sanchez Silva ◽  
Ignacio Carvajal Mariscal ◽  
Jesus Alberto Meda Campana

Author(s):  
Chris Dawson ◽  
Stuart Inkpen ◽  
Chris Nolan ◽  
David Bonnell

Many different approaches have been adopted for identifying leaks in pipelines. Leak detection systems, however, generally suffer from a number of difficulties and limitations. For existing and new pipelines, these inevitably force significant trade-offs to be made between detection accuracy, operational range, responsiveness, deployment cost, system reliability, and overall effectiveness. Existing leak detection systems frequently rely on the measurement of secondary effects such as temperature changes, acoustic signatures or flow differences to infer the existence of a leak. This paper presents an alternative approach to leak detection employing electromagnetic measurements of the material in the vicinity of the pipeline that can potentially overcome some of the difficulties encountered with existing approaches. This sensing technique makes direct measurements of the material near the pipeline resulting in reliable detection and minimal risk of false alarms. The technology has been used successfully in other industries to make critical measurements of materials under challenging circumstances. A number of prototype sensors were constructed using this technology and they were tested by an independent research laboratory. The test results show that sensors based on this technique exhibit a strong capability to detect oil, and to distinguish oil from water (a key challenge with in-situ sensors).


Sign in / Sign up

Export Citation Format

Share Document