measurement equipment
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 66)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Vol 18 (1) ◽  
pp. 1-13
Author(s):  
David Thompson ◽  
Haibo Wang

This work presents a methodology to monitor the power signature of IoT devices for detecting operation abnormality. It does not require bulky measurement equipment thanks to the proposed power signature generation circuit which can be integrated into LDO voltage regulators. The proposed circuit is implemented using a 130 nm CMOS technology and simulated with power trace measured from a wireless sensor. It shows the generated power signature accurately reflects the power consumption and can be used to distinguish different operation conditions, such as wireless transmission levels, data sampling rates and microcontroller UART communications.


Author(s):  
Guoda Chen ◽  
Qi Lu ◽  
Yifan Ge ◽  
Wei Zhang

This paper studied the air film pressure field (AFPF) characteristics of aerostatic thrust bearing, in which we proposed the measurement equipment for the 2D AFPF and successfully verified the theoretical simulation results. The experimental results agreed well with the theoretical results. However, in the area between the distribution circle of orifice to the air film outlet boundary, the experimental air film pressure (AFP) was slightly higher than the theoretical one. While for the area between the distribution circle of orifice and the center of the bearing, it showed the opposite law. Besides, the increase ratio of the AFP was close to that of the external load with its increase.


2021 ◽  
Vol 2128 (1) ◽  
pp. 012006
Author(s):  
Ayman R Sabek ◽  
Ahmed A Ibrahim ◽  
Wael A Ali

Abstract A dual band monopole antenna with triangle stubs operated at 28/38 GHz applications is introduced. The introduced dual band antenna is used for next 5G applications. The introduced antenna is designed on a Rogers RT 4003 with height h = 0.203 mm, dielectric constant ɛr = 3.55 and over dimensions of 12×12×0.237 mm3. The simulated results show that the presented design has two bands, the first one is from 25.9 to 30.4 GHz and the second is from 36.4 to 40.2 GHz with peak gain of 4.54 dB, 4.21 dB in the first and second frequencies respectively. The simulated radiation efficiency for the first and second frequencies is 94% and 96.6%, respectively. There are some small discrepancies between simulated and measured findings due to the fabrication and measurement equipment.


Author(s):  
Hamid Radmanesh

In this paper, the application of microstrip technology is investigated in low-pass filters. A cascade microstrip low-pass filter with a sharp frequency response and a good cut-off bandwidth is presented using a modified radial resonator. The advantages of this proposed filter include minor losses in the transit band as well as the desired return. This filter design shows consistency when compared with the results of simulation and model performance. A comparison between the parameter values of this filter and previous structures indicates that it is desirable. The proposed filter can be used in modern communication systems such as aircraft distance measurement equipment (DME) antenna.


Author(s):  
Reinhard Niehuis ◽  
Martin Bitter

Since its first operation in 1956 at DFL Braunschweig and after its movement to Munich, the High-Speed Cascade Wind Tunnel (HGK) at Bundeswehr University Munich is intensively used for fundamental and application-oriented research on aero-thermodynamics of turbomachinery bladings. Numerous systematic airfoil design studies were performed over the last decades. Thanks to the HGK facility, which enables thorough and detailed cascade testing at turbomachinery-relevant conditions, many of those airfoils for different purposes finally made it into turbomachinery applications. Nowadays, the HGK still provides very useful contributions to the understanding of the complicated flow in compressor and turbine bladings, and thereby extends the knowledge on relevant physical phenomena. As a consequence of the intense usage, this unique test facility was subject to a major revision and upgrade. The performed changes are presented within this paper including an overview on new capabilities in terms of the extended operating range, the data acquisition system, and the recently available measurement equipment.


Author(s):  
Muhanad Al-jubouri ◽  
Richard Ray

Bridges are indispensable structures vital to the operation of road and rail transportation networks. Crossing rivers and artificial waterways, however, presents a risk to their foundations due to scour actions. Scour is the number one cause for bridge failures and may occur beneath any bridge, large or small, with supports located within the waterway. This paper provides a summary of present scour detection and measurement equipment and associated assessment methodologies. In this regard, particular emphasis is placed on structural health monitoring better to evaluate the presence and influence of potential scour. A Sensitivity Analysis on a newly introduced monitoring system is also assumed. Furthermore, much research has been undertaken to create a technology that can instantly identify and detect bridge scour, improving survey reliability through prior inspection and prompt intervention. This research will explore and evaluate bridge scour detection methods employed and suggest a possible path for developing the detection system to identify scour depth effectively and efficiently. Finally, our key aim is to minimize human effort in identifying and bridge scour by using a quick, easy-to-use, cost-effective process, resulting in fewer injuries and economic savings.


2021 ◽  
Vol 6 (2) ◽  
pp. 39-46
Author(s):  
Bao My Nguyen Thi ◽  
Van Sy Nguyen ◽  
Van Tien Vu ◽  
Quang Tuan Ho ◽  
Thuy Mai Nguyen Thi ◽  
...  

X-ray measurement equipment is designed which utilizes a pair of photodiode detectors. The equipment is designed which utilizes a pair of photodiode detectors units which receive X-rays through filters with different attenuation coefficients for X-rays. The photodiode detector units preferably includes two pairs of photodiode detectors arranged symmetrically in four quadrants with the diodes in each detector unit in diagonally opposite quadrants. The outputs of the detector units are passed to variable gain amplifiers, gains of which are adjusted to bring the output voltages within a desired range, and the outputs of the amplifiers are integrated by integrators. After a selected period of time, the integration is stopped and the output voltages of the integrators are held and transmitted to an analog-to-digital converter. The ratio of the two output signals from a pair of photodiode detectors represents the kVp value of the X-ray machine and another pair of photodiode detectors used to measure the relative current in milliamps (mA) and exposure time of the x-ray unit.In this study,  the equipment have been made for measuring the characteristics of X-Ray with an accuracy of kVp (kV), I (mA) is 5% and the 2% T.


Author(s):  
Alexander Bauer ◽  
◽  
Ronny Scharf ◽  
André Hälsig ◽  
Birgit Awiszus ◽  
...  

This paper is dealing with the comparison of the FEM result quality between a commercial tool and an open source software with regards to the numerical simulation of a single seam WAAM process. For this purpose, an experimental WAAM process was conducted by a welding robot on a 1.4404 (316L) base plate with a 1.4404 (316L) welding wire, connected with the associated measurement equipment. Furthermore, the equivalent setup was transferred in the FEM tools Simufact Welding and Elmer FEM, using the same parameters for both simulations. The calculations show, that both programs are able to generate high quality results with a good accordance to the temperature development within the experimental processes. In summary it can be said, that both programs offer advantages and the decision what tool has to be used depends on the requirements and the possibilities of the user.


Nukleonika ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 103-110
Author(s):  
Jie Xu ◽  
Jizhou Ren ◽  
Jianbo Yang ◽  
Jiawen Fan ◽  
Rui Li ◽  
...  

Abstract This study establishes a near-ground reference radiation field based on typical radionuclides of the Fukushima accident in response to the need for vehicle-borne environmental radiation measurement equipment that can accurately evaluate the environmental dose of nuclear accidents. The Monte Carlo code FLUKA is used to study the environmental dose of such equipment in the early and mid-late reference radiation fields of nuclear accidents. Results of the air dose rate at 1 m above the ground were corrected to eliminate data difference between diverse measurement platforms. Simulation results show that t he dose correction factor (CF) fluctuates at approximately 0.8813 in the early reference radiation field and at approximately 0.6711 in the mid-late reference radiation field. This deviation of the dose CF in the early and mid-late reference radiation fields is within 2% and is not affected by the change in detector position. This research can be applied to obtain more accurate measurement of an ambient dose in the near-ground radiation field and support the vehicle-borne environmental radiation measurement technology.


Sign in / Sign up

Export Citation Format

Share Document