scholarly journals Leak Detection Systems for Short Pipelines

Author(s):  
Renan Martins Baptista

This paper describes procedures developed by PETROBRAS Research & Development Center to assess a software-based leak detection system (LDS) for short pipelines. These so-called “Low Complexity Pipelines” are short pipeline segments with single-phase liquid flow. Detection solutions offered by service companies are frequently designed for large pipeline networks, with batches and multiple injections and deliveries. Such solutions are sometimes impractical for short pipelines, due to high cost, long tuning procedures, complex instrumentation and substantial computing requirements. The approach outlined here is a corporate approach that optimizes a LDS for shorter lines. The two most popular implemented techniques are the Compensated Volume Balance (CVB), and the Real Time Transient Model (RTTM). The first approach is less accurate, reliable and robust when compared to the second. However, it can be cheaper, simpler, faster to install and very effective, being marginally behind the second one, and very cost-efective. This paper describes a procedure to determine whether one can use a CVB in a short pipeline.

Author(s):  
Kevin Hagar ◽  
Bruce Young ◽  
Ross Mactaggart

There are many uses for a software based, real time leak detection system other than just leak detection. Leak detection systems, based on a real time model, have many uses, including instrument analysis, slack line flow detection, batch, scraper and DRA tracking. Hydraulic profiles, trends and Imbalance Signature Plots provide operational tools to augment SCADA displays. When abnormal imbalance is reported, the operator has tools to pin point the problem. These results can also be made available enterprise-wide for use by higher level processes such as accounting, scheduling, planning, and marketing.


Author(s):  
Gerhard Geiger ◽  
Daniel Vogt

Due to the vast mileage of pipelines throughout the world, it is important that dependable leak detection systems (LDSs) are used to promptly identify when a leak has occurred so that appropriate response actions are initiated quickly. The swiftness of these actions can help reduce the consequences of accidents or incidents to the public, environment, and property. Internal systems [4] such as volume balance, mass balance or real-time transient model (RTTM) based methods are used successfully for that purpose. RTTM based methods offer excellent performance but more field sensors are needed than for simpler methods such as volume balancing, and therefore these methods are less robust because of their greater dependence on sensors which could fail. This paper describes a new leak detection methodology which uses pattern recognition techniques to combine two or more internal methods seamlessly into one scheme hence improving performance, robustness and applicability.


Author(s):  
Nicole Gailey ◽  
Noman Rasool

Canada and the United States have vast energy resources, supported by thousands of kilometers (miles) of pipeline infrastructure built and maintained each year. Whether the pipeline runs through remote territory or passing through local city centers, keeping commodities flowing safely is a critical part of day-to-day operation for any pipeline. Real-time leak detection systems have become a critical system that companies require in order to provide safe operations, protection of the environment and compliance with regulations. The function of a leak detection system is the ability to identify and confirm a leak event in a timely and precise manner. Flow measurement devices are a critical input into many leak detection systems and in order to ensure flow measurement accuracy, custody transfer grade liquid ultrasonic meters (as defined in API MPMS chapter 5.8) can be utilized to provide superior accuracy, performance and diagnostics. This paper presents a sample of real-time data collected from a field install base of over 245 custody transfer grade liquid ultrasonic meters currently being utilized in pipeline leak detection applications. The data helps to identify upstream instrumentation anomalies and illustrate the abilities of the utilization of diagnostics within the liquid ultrasonic meters to further improve current leak detection real time transient models (RTTM) and pipeline operational procedures. The paper discusses considerations addressed while evaluating data and understanding the importance of accuracy within the metering equipment utilized. It also elaborates on significant benefits associated with the utilization of the ultrasonic meter’s capabilities and the importance of diagnosing other pipeline issues and uncertainties outside of measurement errors.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2548 ◽  
Author(s):  
Mutiu Adesina Adegboye ◽  
Wai-Keung Fung ◽  
Aditya Karnik

Pipelines are widely used for the transportation of hydrocarbon fluids over millions of miles all over the world. The structures of the pipelines are designed to withstand several environmental loading conditions to ensure safe and reliable distribution from point of production to the shore or distribution depot. However, leaks in pipeline networks are one of the major causes of innumerable losses in pipeline operators and nature. Incidents of pipeline failure can result in serious ecological disasters, human casualties and financial loss. In order to avoid such menace and maintain safe and reliable pipeline infrastructure, substantial research efforts have been devoted to implementing pipeline leak detection and localisation using different approaches. This paper discusses pipeline leakage detection technologies and summarises the state-of-the-art achievements. Different leakage detection and localisation in pipeline systems are reviewed and their strengths and weaknesses are highlighted. Comparative performance analysis is performed to provide a guide in determining which leak detection method is appropriate for particular operating settings. In addition, research gaps and open issues for development of reliable pipeline leakage detection systems are discussed.


Author(s):  
Brent R. Young ◽  
J. Greg Cooke ◽  
Ron E. Daye ◽  
William Y. Svrcek

This paper describes the development and use of a dynamic simulation model and the implementation of a novel leak detection system. Experiences from the implementation and operation of the system will also be detailed from a user perspective. The dynamic model may be used for the transient simulation of the pipelines. The model was used to test the real-time leak detection system. The results of the simulation also prompted a change in the control scheme of the pipelines that resulted in less transient operation. The leak detection system is based upon rigorous thermodynamics and dynamic mass balance calculations driven by real-time information from field flow, pressure and temperature sensors. This system was successfully implemented to replace a simple volume balance system for NGL pipelines near Empress, Alberta.


Author(s):  
Gerhard Geiger

Pipelines are the least expensive and most efficient way to move liquids and gases, but there is a high potential risk of danger in case of a leak. This paper therefore describes pipeline leak detection technologies and emergency shutdown protocols to ensure reliable and safe pipeline operations. The main focus of this paper is on internal leak detection systems which use existing field instrumentation and usually run continuously. External leak detection systems using dedicated measurement equipment such as probes and sensor cables are briefly considered. Particular emphasis will be placed on model-based techniques such as the Real Time Transient Model (RTTM) and Extended Real Time Transient Model (E-RTTM) methods. In case of a leak, appropriate emergency actions are required to limit the consequences and in particular to protect people and the environment. The last part of the paper therefore is devoted to emergency shut-down protocols.


Author(s):  
Jun Zhang ◽  
Adrian Kane

This paper will demonstrate that with limited instruments at the terminals and platforms only, it is feasible to monitor the integrity of offshore pipelines effectively. Some examples of applications will be shown, including both crude oil and natural gas pipelines. The statistical volume balance technology based on flow and pressure measurements at the inlets and outlets only provides the detection and location of leaks. The paper describes the performance of these leak detection systems for incidents ranging from small leaks to pipeline rupture. To help operators run pipelines safely and cost effectively, real-time transient models are used to calculate the flow, pressure, temperature, density and other fluid properties along the pipeline. Instead of using measured flow and pressure, the operators rely on these calculated values to take operational decisions. The combination of hydraulic modelling and statistical leak detection provides the operators with the information and confidence in the integrity of their pipelines. In the event of any incident the operators can take actions quickly and correctly to minimize the consequences.


2013 ◽  
Vol 353-356 ◽  
pp. 3067-3071
Author(s):  
Jiao Na Jiao ◽  
Jian Jun Yu

Researches on leak detection system of gas network are significant to fault pipelines diagnosis. In the daily operation of city gas pipeline network, pipeline leakage is the most risky failure type. This paper attempts to review and analyze the existing gas network leak detection systems, meanwhile, design a new kind of leak detection system for daily monitoring and leakage detection of gas network. The greatest advantage of this system is to be able to do all kinds of leak experimental research, especially has great reference value for the leak detection task in colleges and universities.


Author(s):  
Martin Di Blasi ◽  
Zhan Li

Pipeline ruptures have the potential to cause significant economic and environmental impact in a short period of time, therefore it is critical for pipeline operators to be able to promptly detect and respond to them. Public stakeholder expectations are high and an evolving expectation is that the response to such events be automated by initiating an automatic pipeline shutdown upon receipt of rupture alarm. These types of performance expectations are challenging to achieve with conventional, model-based, leak-detection systems (i.e. CPM–RTTMs) as the reliability measured in terms of the false alarm rate is typically too low. The company has actively participated on a pipeline-industry task force chaired by the API Cybernetics committee, focused on the development of best practices in the area of Rupture Recognition and Response. After API’s release of the first version of a Rupture Recognition and Response guidance document in 2014, the company has initiated development of its own internal Rupture Recognition Program (RRP). The RRP considers several rupture recognition approaches simultaneously, ranging from improvements to existing CPM leak detection to the development of new SCADA based rupture detection system (RDS). This paper will provide an overview of a specific approach to rupture detection based on the use of machine learning and pattern recognition techniques applied to SCADA data.


Author(s):  
Joseph Jutras ◽  
Rick Barlow

MBS, the software based leak detection system employed by Enbridge, is a real time transient model and as such requires fluid characteristics of the various batches that enter the pipeline. In the past, of the 25 plus pipelines modeled, only 4 received fluid identifiers from the field. These fluid identifiers are a sub-string of the batch identifiers stored in flow computers located at custody transfer locations. On the remaining pipelines, Enbridge used fluid density from the field to infer fluid type and therefore characteristics. In the past whenever a number of fluids had the same density, MBS assigned a best-guess of fluid type. The ‘MBS Real Time Injection Batch Data’ project was proposed to bring fluid identifiers to MBS on the remaining lines with the purpose of improving MBS’ selection of fluid properties. Since injection points on the remaining lines were not custody transfer there were no flow computers at these locations. An existing application called Commodity Movement Tracking, or CMT, was used to provide fluid names to the leak detection model. CMT holds past, present, and future injection batch information in an Oracle database. Batch identifiers are queried, placed into the SCADA system, and forwarded on to MBS. This paper explores the new approach, introduced by the ‘MBS Real Time Injection Batch Data’ project, of providing MBS with batch identifiers.


Sign in / Sign up

Export Citation Format

Share Document